Search results for "quantum optics"

showing 10 items of 143 documents

Simulating quantum-optical phenomena with cold atoms in optical lattices

2010

We propose a scheme involving cold atoms trapped in optical lattices to observe different phenomena traditionally linked to quantum-optical systems. The basic idea consists of connecting the trapped atomic state to a non-trapped state through a Raman scheme. The coupling between these two types of atoms (trapped and free) turns out to be similar to that describing light–matter interaction within the rotating-wave approximation, the role of matter and photons being played by the trapped and free atoms, respectively. We explain in particular how to observe phenomena arising from the collective spontaneous emission of atomic and harmonic oscillator samples, such as superradiance and directiona…

Condensed Matter::Quantum GasesQuantum PhysicsQuantum opticsDDC 530 / PhysicsFísicaFOS: Physical sciencesddc:530Physics::Atomic PhysicsQuantum Physics (quant-ph)Quantenoptik
researchProduct

Coherent and squeezed vibrations for discrete variable harmonic oscillators

2009

In this work we study different types of coherent and squeezed states for the Charlier, Kravchuk and Meixner oscillators. We calculate the average values of different observables corresponding to the coherent states. We found that the coherent and squeezed states of the Kravchuk oscillator are unstable. There are also coherent and squeezed states that are similar to the coherent and squeezed states of the harmonic oscillator. We have introduced a discrete variable model for the biophoton coherent radiation, and the coherent thermal and squeezed thermal states. © 2009 Taylor & Francis.

Condensed Matter::Quantum GasesQuantum opticsPhysicsObservableQuantum Physicsharmonic oscillator coherent statesAtomic and Molecular Physics and OpticsBiophotonVibrationQuantum mechanicsQuantum electrodynamicsThermalCoherent statesHarmonic oscillatorSqueezed coherent stateJournal of Modern Optics
researchProduct

Simulating quantum-optical phenomena with optical lattices

2011

Cold atoms trapped in optical lattices have been proved to be very versatile quantum systems in which a large class of many-body condensed-matter Hamiltonians can be simulated [1].

Condensed Matter::Quantum GasesQuantum opticsPhysicsOptical latticePhotonPhotodetectionOptical microcavitylaw.inventionOptical phenomenaOptical phase spacelawQuantum mechanicsMathematics::Metric GeometryPhysics::Atomic PhysicsQuantumComputer Science::Databases2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)
researchProduct

Radiative emission due to atomic self-dressing in QED

2002

We study the radiative emission due to the self-dressing of a two-level atom, initially in its bare ground state, interacting with the zero-point electromagnetic field. Evolution in time leads to the formation of a dressed ground state of lower energy. This energy difference between bare and dressed ground state is taken into account by the emission of real photons. In order to describe this aspect of the self-dressing process we study the transition probability amplitude from the initial bare state to an asymptotic state consisting of the atom in its dressed ground state plus some real photons. Adopting nonperturbative techniques based on the resolvent method we find that the bare-dressed …

Condensed Matter::Quantum GasesQuantum opticsPhysicsPhotonAtomic and Molecular Physics and OpticsDark stateExcited stateQuantum electrodynamicsRadiative transferSpontaneous emissionPhysics::Atomic PhysicsEmission spectrumAtomic physicsGround statePhysical Review A
researchProduct

Focus on atom optics and its applications

2010

Atom optics employs the modern techniques of quantum optics and laser cooling to enable applications which often outperform current standard technologies. Atomic matter wave interferometers allow for ultra-precise sensors; metrology and clocks are pushed to an extraordinary accuracy of 17 digits using single atoms. Miniaturization and integration are driven forward for both atomic clocks and atom optical circuits. With the miniaturization of information-storage and -processing devices, the scale of single atoms is approached in solid state devices, where the laws of quantum physics lead to novel, advantageous features and functionalities. An upcoming branch of atom optics is the control of …

Condensed Matter::Quantum GasesQuantum opticsPhysicsQuantum opticsDDC 530 / PhysicsGeneral Physics and AstronomyAtomic clockIonLaser coolingAtomPhysics::Atomic and Molecular ClustersAtom opticsMiniaturizationddc:530Physics::Atomic PhysicsMatter waveAtomic physicsQuantenoptik
researchProduct

Robust control for quantum technologies and quantum information processing

2022

We consider the robust inverse geometric optimization of arbitrary population transfers and single-qubit gates in a two-level system.Robustness with respect to pulse inhomogeneities is demonstrated.We show that for time or energy optimization, the pulse amplitude is constant, and we provide the analytic form of the detuning as Jacobi elliptic cosine.We deal with the task of robust complete population transfer on a 3-level quantum system in lambda configuration.First, we use the Lewis-Riesenfeld method to derive a family of solutions leading to an exact transfer.Among this family, we identify a tracking solution with a single parameter to control simultaneously the fidelity of the transfer, …

Controle coherentQuantum opticsTechnologies quantiqueQuantum technologies[PHYS.PHYS] Physics [physics]/Physics [physics]Coherent controlOptique quantique
researchProduct

Theory for the stationary polariton response in the presence of vibrations

2019

We construct a model describing the response of a hybrid system where the electromagnetic field - in particular, surface plasmon polaritons - couples strongly with electronic excitations of atoms or molecules. Our approach is based on the input-output theory of quantum optics, and in particular it takes into account the thermal and quantum vibrations of the molecules. The latter is described within the $P(E)$ theory analogous to that used in the theory of dynamical Coulomb blockade. As a result, we are able to include the effect of the molecular Stokes shift on the strongly coupled response of the system. Our model then accounts for the asymmetric emission from upper and lower polariton mod…

DYNAMICSQuantum decoherenceFOS: Physical sciences02 engineering and technology01 natural sciencesplasmonicsvärähtelytQuantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Polaritonhybrid quantum systemskvanttikemiaMOLECULE010306 general physicskvanttifysiikkaQuantumQuantum opticsPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSurface plasmonCoulomb blockade021001 nanoscience & nanotechnologySurface plasmon polaritonSURFACE-PLASMON POLARITONSpintailmiötLight emission0210 nano-technologyQuantum Physics (quant-ph)ENERGY-TRANSFERpolaritonsemissio (fysiikka)
researchProduct

Monotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control field

2008

We consider the optimal control of quantum systems interacting non-linearly with an electromagnetic field. We propose new monotonically convergent algorithms to solve the optimal equations. The monotonic behavior of the algorithm is ensured by a non-standard choice of the cost which is not quadratic in the field. These algorithms can be constructed for pure and mixed-state quantum systems. The efficiency of the method is shown numerically on molecular orientation with a non-linearity of order 3 in the field. Discretizing the amplitude and the phase of the Fourier transform of the optimal field, we show that the optimal solution can be well-approximated by pulses that could be implemented ex…

Electromagnetic fieldPhysicsQuantum opticsQuantum Physics[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Field (physics)FOS: Physical sciencesMonotonic function[ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA][MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA]Linear-quadratic-Gaussian controlOptimal control01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasNonlinear system[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesApplied mathematicsQuantum algorithmQuantum Physics (quant-ph)010306 general physics[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph][MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]ComputingMilieux_MISCELLANEOUSPhysical Review A
researchProduct

Exact solution of generalized Tavis - Cummings models in quantum optics

1996

Quantum inverse methods are developed for the exact solution of models which describe N two-level atoms interacting with one mode of the quantized electromagnetic field containing an arbitrary number of excitations M. Either a Kerr-type nonlinearity or a Stark-shift term can be included in the model, and it is shown that these two cases can be mapped from one to the other. The method of solution provides a general framework within which many related problems can similarly be solved. Explicit formulae are given for the Rabi splitting of the models for some N and M, on- and off-resonance. It is also shown that the solution of the pure Tavis - Cummings model can be reduced to solving a homogen…

Electromagnetic fieldQuantum opticsExplicit formulaeGeneral Physics and AstronomyExact differential equationStatistical and Nonlinear PhysicsNonlinear systemExact solutions in general relativityQuantum mechanicsOrdinary differential equationQuantumComputer Science::DatabasesMathematical PhysicsMathematicsMathematical physicsJournal of Physics A: Mathematical and General
researchProduct

Journeys from quantum optics to quantum technology

2017

Sir Peter Knight is a pioneer in quantum optics which has now grown to an important branch of modern physics to study the foundations and applications of quantum physics. He is leading an effort to develop new technologies from quantum mechanics. In this collection of essays, we recall the time we were working with him as a postdoc or a PhD student and look at how the time with him has influenced our research.

EngineeringTechnologyAtomic and Molecular Physics and OpticEmerging technologiesQuantum technologiesTRAPPED IONQuantum physicsSINGLE-ATOM0205 Optical PhysicsPhysics - History and Philosophy of PhysicsNONCLASSICAL MOTIONAL STATESFOS: Physical sciences01 natural sciences010305 fluids & plasmasTheoretical physicsQC350Engineering0202 Atomic Molecular Nuclear Particle And Plasma Physics0103 physical sciencesPERIODIC LEVEL-CROSSINGSStatistical and Nonlinear Physics; Electronic Optical and Magnetic Materials; Atomic and Molecular Physics and Optics; Electrical and Electronic EngineeringHistory and Philosophy of Physics (physics.hist-ph)ULTRAFAST MOLECULAR-DYNAMICSElectrical and Electronic Engineering010306 general physicsQCQuantum opticsScience & Technologybusiness.industryElectronic Optical and Magnetic MaterialModern physics0906 Electrical And Electronic EngineeringINDUCED ELECTRON-DIFFRACTIONStatistical and Nonlinear PhysicsEngineering Electrical & ElectronicOpticsModern physicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsQuantum technologyQuantum theoryINDUCED CONTINUUM STRUCTUREHIGH-HARMONIC-GENERATIONENTANGLED COHERENT STATESQuantum Physics (quant-ph)businessBAND SQUEEZED VACUUMStatistical and Nonlinear Physic
researchProduct