Search results for "quantum phase transition"
showing 10 items of 100 documents
Dynamical mean-field theory versus second-order perturbation theory for the trapped two-dimensional Hubbard antiferromagnet
2011
In recent literature on trapped ultracold atomic gases, calculations for two-dimensional (2D) systems are often done within the dynamical mean-field theory (DMFT) approximation. In this paper, we compare DMFT to a fully 2D, self-consistent second-order perturbation theory for weak interactions in a repulsive Fermi-Hubbard model. We investigate the role of quantum and of spatial fluctuations when the system is in the antiferromagnetic phase, and find that, while quantum fluctuations decrease drastically the order parameter and critical temperatures, spatial fluctuations only play a noticeable role when the system undergoes a phase transition, or at phase boundaries in the trap. We conclude f…
Asymmetrical tunneling in heavy fermion metals as a possible probe for their non-Fermi liquid peculiarities
2007
Tunneling conductivity and point contact spectroscopy between heavy fermion metal and a simple metallic point contact may serve as a convenient probing tool for non-Fermi liquid behavior. Landau Fermi liquid theory predicts that the differential conductivity is a symmetric function of voltage bias. This symmetry, in fact, holds if so called particle–hole symmetry is preserved. Here, we show that the situation can be different when one of the two metals is a heavy fermion one whose electronic system is a heavy fermion liquid. When the heavy fermion liquid undergoes fermion condensation quantum phase transition, the particle–hole symmetry in the excitation spectra is violated making both the …
Quantum critical point in high-temperature superconductors
2009
Recently, in high-T_c superconductors (HTSC), exciting measurements have been performed revealing their physics in superconducting and pseudogap states and in normal one induced by the application of magnetic field, when the transition from non-Fermi liquid to Landau Fermi liquid behavior occurs. We employ a theory, based on fermion condensation quantum phase transition which is able to explain facts obtained in the measurements. We also show, that in spite of very different microscopic nature of HTSC, heavy-fermion metals and 2D 3He, the physical properties of these three classes of substances are similar to each other.
Flat Bands and Salient Experimental Features Supporting the Fermion Condensation Theory of Strongly Correlated Fermi
2020
The physics of strongly correlated Fermi systems, being the mainstream topic for more than half a century, still remains elusive. Recent advancements in experimental techniques permit to collect important data, which, in turn, allow us to make the conclusive statements about the underlying physics of strongly correlated Fermi systems. Such systems are close to a special quantum critical point represented by topological fermion-condensation quantum phase transition which separates normal Fermi liquid and that with a fermion condensate, forming flat bands. Our review paper considers recent exciting experimental observations of universal scattering rate related to linear temperature dependence…
Phase transitions and phase equilibria in spherical confinement
2013
Phase transitions in finite systems are rounded and shifted and affected by boundary effects due to the surface of the system. This interplay of finite size and surface effects for fluids confined inside of a sphere of radius $R$ is studied by a phenomenological theory and Monte Carlo simulations of a model for colloid-polymer mixtures. For this system the phase separation in a colloid-rich phase and a polymer-rich phase has been previously studied extensively in the bulk. It is shown that spherical confinement can strongly enhance the miscibility of the mixture. Depending on the wall potentials at the confining surface, the wetting properties of the wall can be controlled, and this interpl…
Critical behavior of a supersymmetric extension of the Ginzburg-Landau model
2011
We make a connection between quantum phase transitions in condensed matter systems, and supersymmetric gauge theories that are of interest in the particle physics literature. In particular, we point out interesting effects of the supersymmetric quantum electrodynamics upon the critical behavior of the Ginzburg-Landau model. It is shown that supersymmetry fixes the critical exponents, as well as the Landau-Ginzburg parameter, and that the model resides in the type II regime of superconductivity.
Theory of ground state factorization in quantum cooperative systems.
2008
We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows to determine rigorously existence, location, and exact form of separable ground states in a large variety of, generally non-exactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.
Microemulsions: Phase transitions and their dynamics
2007
By differential scanning microcalorimetry we investigate temperature-induced phase transitions and their dynamics in mixtures of water, oil and a non-ionic surfactant. Special emphasis is on an investigation of the transition from a lamellar to a microemulsion phase and on the emulsification failure. The first-order phase transition from a lamellar to a microemulsion phase leads to heat changes up to 1k BT per surfactant molecule. These large values for the latent heat are quantitatively described by an interfacial model which takes into account the temperature dependence of the spontaneous curvature.
Quantum Critical Scaling under Periodic Driving
2016
Universality is key to the theory of phase transition stating that the equilibrium properties of observables near a phase transition can be classified according to few critical exponents. These exponents rule an universal scaling behaviour that witnesses the irrelevance of the model's microscopic details at criticality. Here we discuss the persistence of such a scaling in a one-dimensional quantum Ising model under sinusoidal modulation in time of its transverse magnetic field. We show that scaling of various quantities (concurrence, entanglement entropy, magnetic and fidelity susceptibility) endures up to a stroboscopic time $\tau_{bd}$, proportional to the size of the system. This behavio…
Fermion Condensation in Strongly Interacting Fermi Liquids
2017
This article discusses the construction of a theory which is capable to explain so-called non-Fermi liquid behavior of strongly correlated Fermi systems. We show that such explanation can be done within the framework of a so-called fermion condensation approach. In this approach, as a result of fermion condensation quantum phase transition, ordinary Landau quasiparticles do not decay, but reborn, gaining new properties, as Phoenix from the ashes. The physical reason for that is altering of Fermi surface topology. To be more specific, in contrast to standard Landau paradigm stating that the quasiparticle effective mass does not depend on external stimuli like magnetic field and/or temperatur…