Search results for "quantum theory"

showing 10 items of 234 documents

Combined Theoretical and Experimental Study of the Photophysics of Asulam

2013

The photophysics of the neutral molecular form of the herbicide asulam has been described in a joint experimental and theoretical, at the CASPT2 level, study. The unique π → π* aromatic electronic transition (f, ca. 0.5) shows a weak red-shift as the polarity of the solvent is increased, whereas the fluorescence band undergoes larger red-shifts. Solvatochromic data point to higher dipole moment in the excited state than in the ground state (μ(g)μ(e)). The observed increase in pKa in the excited state (pKa* - pKa, ca. 3) is consistent with the results of the Kamlet-Abboud-Taft and Catalán et al. multiparametric approaches. Fluorescence quantum yield varies with the solvent, higher in water (…

LightEstat excitatAnalytical chemistryQuantum yieldElectrons1-PropanolFluorescenceMolecular electronic transitionWater PollutantsPhysical and Theoretical ChemistryPhotolysisAqueous solutionHerbicidesChemistryMethanolSolvatochromismWaterHydrogen-Ion ConcentrationFluorescenceFluorescènciaKineticsExcited stateSolventsQuantum TheoryThermodynamicsCarbamatesGround statePhosphorescenceFisicoquímica
researchProduct

A theoretical insight into the photophysics of psoralen

2006

Psoralen photophysics has been studied on quantum chemistry grounds using the multiconfigurational second-order perturbation method CASPT2. Absorption and emission spectra of the system have been rationalized by computing the energies and properties of the low-lying singlet and triplet excited states. The S1 ππ* state has been determined to be responsible of the lowest absorption and fluorescence bands and to initially carry the population in the photophysical processes related to the phototherapeutic properties of psoralen derivatives. The low-lying T1 ππ* state is, on the other hand, protagonist of the phosphorescence, and its prevalent role in the reactivity of psoralen is suggested to b…

LightPhotochemistryPopulationMolecular ConformationGeneral Physics and AstronomyPerturbation theoryPhotochemistryQuantum chemistryFluorescenceAbsorptionElectromagnetic FieldsTriplet state Excited statesOrganic compoundsReaction kinetics theoryEmission spectrumSinglet statePhysical and Theoretical ChemistryPerturbation theoryTriplet stateeducation:FÍSICA::Química física [UNESCO]education.field_of_studyMolecular StructureChemistryChemistry PhysicalPhosphorescenceFicusinModels TheoreticalCarbonUNESCO::FÍSICA::Química físicaSpectrometry FluorescenceModels ChemicalOrganic compounds ; Photochemistry ; Perturbation theory ; Reaction kinetics theory ; Fluorescence ; Phosphorescence ; Triplet state Excited statesExcited stateQuantum TheoryPhosphorescenceSoftware
researchProduct

Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna–Matthews–Olson Complex

2020

High efficiency of light harvesting in photosynthetic pigment–protein complexes is governed by evolutionary-perfected protein-assisted tuning of individual pigment properties and interpigment interactions. Due to the large number of spectrally overlapping pigments in a typical photosynthetic complex, experimental methods often fail to unambiguously identify individual chromophore properties. Here, we report a first-principles-based modeling protocol capable of predicting properties of pigments in protein environment to a high precision. The technique was applied to successfully uncover electronic properties of the Fenna–Matthews–Olson (FMO) pigment–protein complex. Each of the three subunit…

Light-Harvesting Protein Complexes02 engineering and technologyMolecular Dynamics Simulation010402 general chemistryPhotosynthesis01 natural sciencesChlorobiProtein environmentBacterial ProteinsGeneral Materials SciencePhotosynthesisPhysical and Theoretical ChemistryBacteriochlorophyll AFenna-Matthews-Olson complexElectronic propertiesStrongly coupledChemistryCircular DichroismBacteriochlorophyll AChromophore021001 nanoscience & nanotechnology0104 chemical sciencesEnergy TransferChemical physicsQuantum TheoryGasessense organsExperimental methods0210 nano-technologyThe Journal of Physical Chemistry Letters
researchProduct

Solid-state NMR and computational studies of tetratolyl urea calix[4]arene inclusion compounds.

2009

Solid-state guest dynamics of tetratolyl tetraurea calix[4]arene tetrapentylether dimeric capsules filled with different types of aromatic guests such as benzene-d6, fluorobenzene-d5 and 1,4-difluorobenzene were studied. Upon inclusion, all guest moieties revealed complexation-induced shifts varying from 2.8 ppm to 5.1 ppm. All guest molecules were shown to undergo distinct motions, ranging from mere C6-rotations of benzene-d6 to (ill-defined) 180 degrees phenyl flips of fluorobenzene-d5. In all cases, dynamic heterogeneities were identified based on 2H lineshape deconvolution. In addition, by combination of both a computed nucleus independent chemical shift (NICS) map and explicit 19F and …

Magnetic Resonance SpectroscopyAb initioSolid-stateMolecular ConformationGeneral Physics and AstronomyBenzeneMolecular Dynamics SimulationInclusion compoundchemistry.chemical_compoundchemistrySolid-state nuclear magnetic resonancePhenolsAb initio quantum chemistry methodsComputational chemistryUreaMoleculeQuantum TheoryUreaPhysical and Theoretical ChemistryCalixarenesBenzenePhysical chemistry chemical physics : PCCP
researchProduct

Dynamics of guest molecules in PHTP inclusion compounds as probed by solid-state NMR and fluorescence spectroscopy.

2009

Partially deuterated 1,4-distyrylbenzene () is included into the pseudohexagonal nanochannels of perhydrotriphenylene (PHTP). The overall and intramolecular mobility of is investigated over a wide temperature range by (13)C, (2)H NMR as well as fluorescence spectroscopy. Simulations of the (2)H NMR spectral shapes reveal an overall wobble motion of in the channels with an amplitude of about 4 degrees at T = 220 K and 10 degrees at T = 410 K. Above T = 320 K the wobble motion is superimposed by localized 180 degrees flips of the terminal phenyl rings with a frequency of 10(6) Hz at T = 340 K. The activation energies of both types of motions are around 40 kJ mol(-1) which imply a strong steri…

Magnetic Resonance SpectroscopyMolecular StructureSurface PropertiesGeneral Physics and AstronomyNuclear magnetic resonance spectroscopyFluorescence spectroscopyChrysenesInclusion compoundNanostructureschemistry.chemical_compoundNuclear magnetic resonanceSpectrometry FluorescenceSolid-state nuclear magnetic resonancechemistryDeuteriumChemical physicsIntramolecular forceProton NMRMoleculeQuantum TheoryPhysical and Theoretical ChemistryPhysical chemistry chemical physics : PCCP
researchProduct

The effect of salt content on the structure of iota-carrageenan systems: Na-23 DQF NMR and rheological studies

2009

International audience; 23Na NMR spectroscopy has been used to study the effects of Na+ ion concentrations on the structure of 1% (w/w) iota-carrageenan systems, a natural gelling polysaccharide used as a thickener in the food industry. Rheological and 23Na T1 relaxation time measurements revealed that gel formation correlates with decreases in ion mobility over the range of 0-3% (w/w) sodium content. 23Na single-quantum (SQ) and double-quantum-filtered (DQF) NMR experiments performed on these systems provided evidence for a bound sodium ion fraction in a specifically ordered environment. These results have allowed us to propose a model for the carrageenan gelation mechanism in the presence…

Magnetic Resonance SpectroscopySodiumchemistry.chemical_elementSodium Chloride010402 general chemistryPolysaccharideCarrageenan01 natural sciencesDOUBLE-QUANTUM FILTERIonchemistry.chemical_compound0404 agricultural biotechnologyRheologyRHEOLOGY23NA[CHIM.ANAL]Chemical Sciences/Analytical chemistryMoleculeGeneral Materials ScienceIOTA-CARRAGEENANchemistry.chemical_classificationChromatographyMolecular Structure04 agricultural and veterinary sciencesGeneral ChemistryNuclear magnetic resonance spectroscopyIsotopes of sodium040401 food scienceNMR0104 chemical sciencesCarrageenanchemistrySODIUM BINDING STATEQuantum TheorySodium IsotopesNuclear chemistry
researchProduct

Circular Dichroism of DNA G-Quadruplexes: Combining Modeling and Spectroscopy To Unravel Complex Structures

2016

We report on the comparison between the computational and experimental determination of electronic circular dichroism spectra of different guanine quadruplexes obtained from human telomeric sequences. In particular the difference between parallel, antiparallel, and hybrid structures is evidenced, as well as the induction of transitions between the polymorphs depending on the solution environment. Extensive molecular dynamics simulations (MD) are used to probe the conformational space of the different quadruplexes, and subsequently state-of-the-art hybrid quantum mechanics/molecular mechanics (QM/MM) techniques coupled with excitonic semiempirical Hamiltonian are used to simulate the macromo…

Materials Chemistry2506 Metals and Alloys0301 basic medicineCircular dichroismSurfaces Coatings and FilmNanotechnologyMolecular Dynamics Simulation010402 general chemistryG-quadruplexAntiparallel (biochemistry)01 natural sciencesMolecular mechanics03 medical and health sciencesMolecular dynamicschemistry.chemical_compoundG-QuadruplexeMaterials ChemistryHumans[CHIM]Chemical SciencesPhysical and Theoretical ChemistrySpectroscopyComputingMilieux_MISCELLANEOUSPhysicsQuantitative Biology::BiomoleculesCircular DichroismDNA0104 chemical sciencesSurfaces Coatings and FilmsG-Quadruplexes030104 developmental biologychemistrySettore CHIM/03 - Chimica Generale E InorganicaChemical physicsNucleic Acid ConformationQuantum TheoryDNAHumanMacromoleculeThe Journal of Physical Chemistry B
researchProduct

Quantum-Chemical Insights into the Self-Assembly of Carbon-Based Supramolecular Complexes

2018

Understanding how molecular systems self-assemble to form well-organized superstructures governed by noncovalent interactions is essential in the field of supramolecular chemistry. In the nanoscience context, the self-assembly of different carbon-based nanoforms (fullerenes, carbon nanotubes and graphene) with, in general, electron-donor molecular systems, has received increasing attention as a means of generating potential candidates for technological applications. In these carbon-based systems, a deep characterization of the supramolecular organization is crucial to establish an intimate relation between supramolecular structure and functionality. Detailed structural information on the se…

Materials scienceFullereneNoncovalent interactionsSurface PropertiesSupramolecular chemistryPharmaceutical Sciencechemistry.chemical_elementNanotechnologyContext (language use)ReviewCarbon nanotube010402 general chemistry01 natural sciencesPolymerizationAnalytical Chemistrylaw.inventionquantum chemistrylcsh:QD241-441noncovalent interactionslcsh:Organic chemistrylawDrug DiscoveryNon-covalent interactionsQuímica FísicaPhysical and Theoretical Chemistrychemistry.chemical_classificationNanotubes Carbon010405 organic chemistryGrapheneOrganic Chemistrycarbon-based supramolecular assemblies0104 chemical sciencesCharacterization (materials science)Models ChemicalchemistryChemistry (miscellaneous)Quantum TheoryMolecular MedicineFullerenesCarbonQuantum chemistryAlgorithmsCarbon-based supramolecular assemblies
researchProduct

Hybrid organic-inorganic light-emitting diodes.

2011

The demonstration of colour tunability and high efficiency has brought organic light-emitting diodes (OLEDs) into the displays and lighting market. However, high production costs due to expensive deposition techniques and the use of reactive materials still limit their market entry, highlighting the need for novel concepts. This has driven the research towards the integration of both organic and inorganic materials into devices that benefit from their respective peculiar properties. The most representative example of this tendency is the application of metal oxides in organic optoelectronics. Metal oxides combine properties such as high transparency, good electrical conductivities, tuneable…

Materials scienceLuminescent Agentsbusiness.industryPolymersMechanical EngineeringOxideslaw.inventionTransparency (projection)SemiconductorsMechanics of MaterialslawMetalsElectrodeOLEDDeposition (phase transition)OptoelectronicsQuantum TheoryGeneral Materials ScienceThin filmbusinessReactive materialLight-emitting diodeDiodeAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Effects of Frequency Dependence of the External Quantum Efficiency of Perovskite Solar Cells

2018

Perovskite solar cells are known to show very long response time scales, on the order of milliseconds to seconds. This generates considerable doubt over the validity of the measured external quantum efficiency (EQE) and consequently the estimation of the short-circuit current density. We observe a variation as high as 10% in the values of the EQE of perovskite solar cells for different optical chopper frequencies between 10 and 500 Hz, indicating a need to establish well-defined protocols of EQE measurement. We also corroborate these values and obtain new insights regarding the working mechanisms of perovskite solar cells from intensity-modulated photocurrent spectroscopy measurements, iden…

Materials sciencemetal drawingPerovskite solar cell02 engineering and technology010402 general chemistry01 natural sciencesperovskite solar cellsGeneral Materials SciencePhysical and Theoretical ChemistrySpectroscopyperovskitePerovskite (structure)PhotocurrentResistive touchscreenbusiness.industry021001 nanoscience & nanotechnologyquantum theory0104 chemical sciencesefficiencysolar cellsOptical chopperOptoelectronicsQuantum efficiency0210 nano-technologybusinessCurrent density
researchProduct