Search results for "quantum yield"

showing 10 items of 163 documents

Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent

2021

Nowadays, a larger number of aggressive and corrosive chemical reagents as well as toxic solvents are used to achieve structural modification and cleaning of the final products. These lead to the production of residual, waste chemicals, which are often reactive, cancerogenic, and toxic to the environment. This study shows a new approach to the modification of graphene quantum dots (GQDs) using gamma irradiation where the usage of reagents was avoided. We achieved the incorporation of S and N atoms in the GQD structure by selecting an aqueous solution of L-cysteine as an irradiation medium. GQDs were exposed to gamma-irradiation at doses of 25, 50 and 200 kGy. After irradiation, the optical,…

PhotoluminescenceGeneral Chemical EngineeringQuantum yield02 engineering and technology010402 general chemistryPhotochemistrySettore FIS/07 - FISICA APPLICATA (A BENI CULTURALI AMBIENTALI BIOLOGIA E MEDICINA)01 natural sciencesArticlelaw.inventionchemistry.chemical_compoundlawGeneral Materials ScienceIrradiationbioimagingQD1-999Aqueous solutionatomic force microscopygraphene quantum dotsSinglet oxygenGraphene021001 nanoscience & nanotechnologygamma irradiation0104 chemical sciencesChemistrychemistryphotodynamic therapyQuantum dotReagentphotoluminescence0210 nano-technology
researchProduct

Isotope Effect on the Infrared Photoluminescence Decay of Interstitial Oxygen Molecules in Amorphous SiO2

2009

The decay constants of the a1Δg(v=0)→X3Σg-(v=0) infrared photoluminescence (PL) of isotopically-labeled oxygen molecules 16O18O and 18O2 dissolved in the interstitial voids of a-SiO2 are ~1.7 and ~2.5 times larger than that of 16O2. This difference originates from the isotope shift in the energy of the nonradiative transitions from the a state to the vibronic levels of the X ground state. Calibration of the PL quantum yield using the measured decay constants is essential to measure the correct concentration of isotopically-labeled interstitial O2.

PhotoluminescenceIsotopeInfraredChemistryGeneral EngineeringAnalytical chemistryGeneral Physics and AstronomyQuantum yieldchemistry.chemical_elementOxygenAmorphous solidKinetic isotope effectAtomic physicsGround stateApplied Physics Express
researchProduct

Origin of the Enhanced Photoluminescence Quantum Yield in MAPbBr 3 Perovskite with Reduced Crystal Size

2018

Methylammonium lead bromide perovskite (MAPbBr3) has been widely investigated for applications in visible perovskite light-emitting diodes (LEDs). Fine-tuning of the morphology and of the crystal size, from the microscale down to the quantum confinement regime, has been used to increase the photoluminescence quantum yield (PLQY). However, the physical processes underlying the PL emission of this perovskite remain unclear. Here, we elucidate the origin of the PL emission of polycrystalline MAPbBr3 thin films by different spectroscopic techniques. We estimate the exciton binding energy, the reduced exciton effective mass, and the trap density. Moreover, we confirm the coexistence of free carr…

PhotoluminescenceMaterials science530 PhysicsExcitonF100PopulationF200Energy Engineering and Power TechnologyQuantum yield02 engineering and technology010402 general chemistry01 natural sciencesCondensed Matter::Materials ScienceEffective mass (solid-state physics)540 ChemistryMaterials ChemistryThin filmeducationeducation.field_of_studyRenewable Energy Sustainability and the Environment021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologyChemistry (miscellaneous)Quantum dotChemical physicsCrystallite0210 nano-technology
researchProduct

Structural and chemical characterization of CdSe-ZnS core-shell quantum dots

2018

Abstract The structural and compositional properties of CdSe-ZnS core-shell quantum dots (QDs) with a sub-nm shell thickness are analyzed at the atomic scale using electron microscopy. QDs with both wurtzite and zinc blende crystal structures, as well as intermixing of the two structures and stacking faults, are observed. High-angle annular dark-field scanning transmission electron microscopy suggests the presence of a lower atomic number epitaxial shell of irregular thickness around a CdSe core. The presence of a shell is confirmed using energy dispersive X-ray spectroscopy. Despite the thickness irregularities, the optical properties of the particles, such as photoluminescence and quantum…

PhotoluminescenceMaterials scienceCondensed Matter::OtherShell (structure)General Physics and AstronomyQuantum yield02 engineering and technologySurfaces and InterfacesGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall Effect010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMolecular physics0104 chemical sciencesSurfaces Coatings and FilmsCondensed Matter::Materials ScienceQuantum dotScanning transmission electron microscopyPhysics::Atomic and Molecular ClustersAtomic number0210 nano-technologyHigh-resolution transmission electron microscopyWurtzite crystal structureApplied Surface Science
researchProduct

Engineering Sr-doping for enabling long-term stable FAPb1xSrxI3 quantum dots with 100% photoluminescence quantum yield

2021

The Pb substitution in quantum dots (PQDs) with lesser toxic metals has been widely searched to be environmentally friendly, and be of comparable or improved performance compared to the lead-perovskite. However, the chemical nature of the lead substitute influences the incorporation mechanism into PQDs, which has not been explored in depth. In this work, we analyzed Sr-doping-induced changes in FAPbI3 perovskites by studying the optical, structural properties and chemical environment of FAPb1−xSrxI3 PQDs. The substitution of Pb by 7 at% Sr allows us to achieve FAPb1−xSrxI3 PQDs with 100% PLQY, high stability for 8 months under a relative humidity of 40–50%, and T80 = 6.5 m…

PhotoluminescenceMaterials scienceDopingengineering Sr-dopingQuantum yield02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesenabling long-term stable0104 chemical sciencesImproved performanceQuantum dotphotoluminescence quantum yieldMaterials Chemistry0210 nano-technology
researchProduct

Tunable luminescent lead bromide complexes

2020

Lead halides are used extensively to prepare perovskite-based devices but it is less known that lead halides can also form luminescent complexes in solvents. Using polyethylene glycol as a solvent, a lead bromide complex with a photoluminescence quantum yield over 20% is obtained and the photoluminescence peak can be shifted around 50 nm with different alkylammonium bromides.

PhotoluminescenceMaterials scienceInorganic chemistryLead bromideQuantum yieldHalideGeneral ChemistryPolyethylene glycolSolventchemistry.chemical_compoundchemistryMaterials ChemistryLuminescenceMaterialsCèl·lules fotoelèctriquesPerovskite (structure)
researchProduct

The Luminescence of CH3NH3PbBr3Perovskite Nanoparticles Crests the Summit and Their Photostability under Wet Conditions is Enhanced

2016

CH3 NH3 PbBr3 perovskite nanoparticles (PAD ) are prepared with a photoluminescence quantum yield of ≈100% in air atmosphere by using the quasi-spherical shaped 2-adamantylammonium bromide (ADBr) as the only capping ligand. The photostability under wet conditions of this kind of nanoparticles is enhanced by using cucurbit[7]uril-adamantylammonium (AD@CB) host-guest complexes as the capping ligand.

PhotoluminescenceMaterials scienceLigandInorganic chemistryNanoparticleQuantum yield02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical sciencesBiomaterialschemistry.chemical_compoundchemistryBromideCucurbiturilGeneral Materials Science0210 nano-technologyLuminescenceBiotechnologyPerovskite (structure)Small
researchProduct

Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy

2015

Herein, the ability of gamma irradiation to enhance the photoluminescence properties of graphene quantum dots (GQDs) was investigated. Different doses of gamma-irradiation were used on GQDs to examine the way in which their structure and optical properties can be affected. The photoluminescence quantum yield was increased six times for the GQDs irradiated with high doses compared to the nonirradiated material. Both photoluminescence lifetime and values of optical band gap were increased with the dose of applied gamma irradiation. In addition, the exploitation of the gamma-irradiated GQDs as photosensitizers was examined by monitoring the production of singlet oxygen under UV illumination. T…

PhotoluminescenceMaterials scienceLuminescenceBand gapQuantum yieldgraphene quantum dot02 engineering and technology010402 general chemistryPhotochemistryMicroscopy Atomic Force01 natural scienceslaw.inventionchemistry.chemical_compoundlawQuantum DotsSpectroscopy Fourier Transform InfraredGeneral Materials ScienceIrradiationParticle SizePhotosensitizing Agentsgraphene quantum dotsSinglet OxygenGraphenebusiness.industrySinglet oxygenElectron Spin Resonance Spectroscopy021001 nanoscience & nanotechnologygamma irradiation0104 chemical scienceschemistryPhotochemotherapyphotodynamic therapyQuantum dotGamma Raysgamma irradiation; graphene quantum dots; photodynamic therapy; photoluminescence; quantum yieldOptoelectronicsGraphiteSpectrophotometry Ultravioletphotoluminescence0210 nano-technologyLuminescencebusinessquantum yield
researchProduct

Effects of Oxygen Plasma on the Chemical, Light-Emitting, and Electrical-Transport Properties of Inorganic and Hybrid Lead Bromide Perovskite Nanocry…

2018

We show that oxygen plasma affects in different ways the structural, chemical, optical, and electrical properties of methylammonium and cesium lead bromide nanocrystals. Hybrid organic–inorganic nanocrystals were severely and quickly degraded by oxygen plasma at 50 W. Their photoluminescence was quenched with almost 100% loss of the initial quantum yield, which is linked to decomposition of the nanocrystals. Inorganic nanocrystals were more resistant to oxygen plasma in the same conditions. Despite a moderate loss of photoluminescence and electrical conductivity, oxygen plasma had a positive impact, removing unbound ligands and resulting in more ohmic behavior of the film. This paves the wa…

PhotoluminescenceMaterials scienceNanotecnologiaQuantum yield02 engineering and technologyPlasmaConductivitat elèctricaConductivity010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesNanocrystalChemical engineeringElectrical resistivity and conductivityGeneral Materials Science0210 nano-technologyOhmic contactMaterialsPerovskite (structure)ACS Applied Nano Materials
researchProduct

Emission Enhancement by Intramolecular Stacking between Heteroleptic Iridium(III) Complex and Flexibly Bridged Aromatic Pendant Group

2019

Phosphorescent iridium(III) complexes suffer from a strong aggregation quenching, limiting their use in solution-processed or crystalline organic light-emitting diodes. Here we report how an intramolecular stacking between a flexibly bridged bulky aromatic pendant group and the core of nonionic heteroleptic complex can be exploited to minimize the negative effects of this drawback. The stacked conformation provides a rigid sterical shielding of the polar molecular surface, improving photoluminescence quantum yield of the complex both in solution and crystalline state.

PhotoluminescenceQuenching (fluorescence)010405 organic chemistryStackingchemistry.chemical_elementQuantum yield010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryCrystallographychemistryIntramolecular forceIridiumPhysical and Theoretical ChemistryPhosphorescencePendant groupInorganic Chemistry
researchProduct