Search results for "quarkonium"

showing 10 items of 92 documents

Charged charmonium molecules

2010

We make use of a self-consistent quark-model based study of four-quark charmonium-like states to interpret recent charmonium experimental data. We conclude that there exists a ${D}^{*}{\overline{D}}^{*}$ meson-meson molecule with quantum numbers $({I}^{G}){J}^{PC}=({1}^{\ensuremath{-}}){2}^{++}$. Our study confirms the presence of charged charmonium-like resonances on the excited charmonium spectrum. We find support from recent experimental data by the Belle Collaboration [R. Mizuk et al. (Belle Collaboration), Phys. Rev. D 78, 072004 (2008)]. Confirmation of the experimental data by the Belle Collaboration and the determination of the quantum numbers of the new structures would help in dis…

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsMesonHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyHadronQuark modelElementary particleQuantum numberQuarkoniumExcited stateHigh Energy Physics::ExperimentPhysical Review D
researchProduct

Experimental determination of in DELPHI

1998

The running mass of the b quark as defined in the MS renormalization scheme, mb, was measured at the MZ scale using 2.8 million hadronic Z0 decays collected by the DELPHI experiment at LEP. The result is mb(MZ) = 2.67 ± 0.25(stat.) ± 0.34(frag.) ± 0.27(theo.)GeV/c2 which differs from that obtained at the γ scale, by mb(Mγ2)−mb(MZ) = 1.49±0.52 GeV/c2. This measurement, performed far from the bb production threshold, provides the first experimental observation of the running of the quark masses.

QuarkPhysicsNuclear and High Energy PhysicsParticle decayParticle physicsMesonBranching fractionHadronInvariant massQuarkoniumBottom quarkAtomic and Molecular Physics and OpticsNuclear Physics B - Proceedings Supplements
researchProduct

Search for γγ→ηb in e+e− collisions at LEP 2

2002

A search for the pseudoscalar meson eta_b is performed in two-photon interactions at LEP~2 with an integrated luminosity of 699 pb^-1 collected at e+e- centre-of-mass energies from 181 GeV to 209 GeV. One candidate event is found in the six-charged-particle final state and none in the four-charged-particle final state, in agreement with the total expected background of about one event. Upper limits of Gamma_gammagamma(eta_b) * BR(eta_b -> 4 charged particles) 6 charged particles) < 132 eV are obtained at 95% confidence level, which correspond to 95% confidence level upper limits of 9.0% and 25% on these branching ratios.

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsMeson010308 nuclear & particles physicsQuarkonium01 natural sciencesPseudoscalar mesonConfidence intervalCharged particleNuclear physics0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsPhysics Letters B
researchProduct

Heavy quarkonium: progress, puzzles, and opportunities

2011

A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flo…

High Energy Physics - TheoryNuclear TheoryPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeTevatronB-C MESON; QCD SUM-RULES; NUCLEUS COLLISIONSAtomic01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Broad spectrumHigh Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicseffective field theoryBatavia TEVATRON CollNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentBrookhaven RHIC CollQuantum chromodynamicsPhysicsQuantum PhysicsLarge Hadron ColliderHigh Energy Physics - Lattice (hep-lat)lattice field theoryHERAQuarkoniumNuclear & Particles PhysicsCLEOB-C MESONHigh Energy Physics - PhenomenologyDESY HERA Stordecay [quarkonium]Jefferson LabParticle physicsFOS: Physical sciencesnonrelativistic [quantum chromodynamics]DeconfinementB-factoryNuclear Theory (nucl-th)High Energy Physics - Latticescattering [heavy ion]QCD SUM-RULES0103 physical sciencesNuclearddc:530010306 general physicsEngineering (miscellaneous)Particle Physics - Phenomenologyproduction [quarkonium]BES010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyplasma [quark gluon]FísicaMoleculartetraquarkHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]hadron spectroscopy [meson]hadron spectroscopy [quarkonium]High Energy Physics::Experimentheavy [quarkonium]NUCLEUS COLLISIONSThe European Physical Journal C
researchProduct

Two-photon and one-photon–one-vector meson decay widths of thef0(1370),f2(1270),f0(1710),f2′(1525), andK2*(1430)

2010

We calculate the radiative decay widths, two-photon ($\ensuremath{\gamma}\ensuremath{\gamma}$) and one-photon--one-vector meson ($V\ensuremath{\gamma}$), of the dynamically generated resonances from vector-meson--vector-meson interaction in a unitary approach based on the hidden-gauge Lagrangians. In the present paper we consider the following dynamically generated resonances: ${f}_{0}(1370)$, ${f}_{0}(1710)$, ${f}_{2}(1270)$, ${f}_{2}^{\ensuremath{'}}(1525)$, ${K}_{2}^{*}(1430)$, two $\mathrm{\text{strangeness}}=0$ and $\mathrm{\text{isospin}}=1$ states, and two $\mathrm{\text{strangeness}}=1$ and $\mathrm{\text{isospin}}=1/2$ states. For the ${f}_{0}(1370)$ and ${f}_{2}(1270)$ we reproduc…

PhysicsNuclear and High Energy PhysicsParticle physicsParticle decayMesonIsospinHadronElementary particleVector mesonStrangenessQuarkoniumPhysical Review D
researchProduct

QQ-onia package: a numerical solution to the Schrodinger radial equation for heavy quarkonium

2008

30 pages, 3 figures.-- ISI article identifier:000265158700009.-- ArXiv pre-print avaible at: http://arxiv.org/abs/0805.2704

PhysicsMesonbusiness.industrySpectrum (functional analysis)High Energy Physics::PhenomenologyFOS: Physical sciencesGeneral Physics and AstronomyFísicaQuarkoniumSquare (algebra)High Energy Physics - Phenomenologysymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)SoftwareHardware and ArchitectureSimple (abstract algebra)Quantum electrodynamicsWave function at the originHeavy quarkonium potentialsymbolsbusinessSchrödinger's catSpin-½
researchProduct

Search for the Xb and other hidden-beauty states in the π+π−ϒ(1S) channel at ATLAS

2015

This Letter presents a search for a hidden-beauty counterpart of the X(3872) in the mass ranges 10.05--10.31 GeV and 10.40--11.00 GeV, in the channel Xb→π+π−Υ(1S)(→μ+μ−), using 16.2 fb−1 of s√=8 TeV pp collision data collected by the ATLAS detector at the LHC. No evidence for new narrow states is found, and upper limits are set on the product of the Xb cross section and branching fraction, relative to those of the Υ(2S), at the 95% confidence level using the CLS approach. These limits range from 0.8% to 4.0%, depending on mass. For masses above 10.1 GeV, the expected upper limits from this analysis are the most restrictive to date. Searches for production of the Υ(13DJ), Υ(10860), and Υ(110…

Nuclear physicsPhysicsNuclear and High Energy PhysicsPionLarge Hadron Collidermedicine.anatomical_structureChannel (digital image)MesonBranching fractionAtlas (anatomy)medicineQuarkoniumX(3872)Physics Letters B
researchProduct

Tree-level flavor-changing neutral currents in theBsystem: FromCPasymmetries to rare decays

2001

corresponding to 0.59 ≤ sin(2�) ≤ 0.82, which is cer- tainly outside the 1� Babar range but not outside the world average. This potential discrepancy is at the ori- gin of several papers (6) studying the implications of a small aJ/ in the search of new physics. In this paper, we analyze the implications of this situ- ation for a realistic model, obtained with the only addi- tion of an isosinglet down vector-like quark (7) to the SM spectrum. This model naturally arises, for instance, as the low-energy limit of an E6 grand unified theory. At a more phenomenological level, models with isosinglet quarks provide the simplest self-consistent framework to study deviations of 3 ×3 unitarity of the…

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsUnitarityCabibbo–Kobayashi–Maskawa matrixPhysics beyond the Standard ModelGrand Unified TheoryB mesonQuarkoniumStandard ModelPhysical Review D
researchProduct

Search forfJ(2220)in RadiativeJ/ψDecays

2010

We present a search for f_(J)(2220) production in radiative J/ψ→γf_(J)(2220) decays using 460  fb^(-1) of data collected with the BABAR detector at the SLAC PEP-II e^(+)e^(-) collider. The f_(J)(2220) is searched for in the decays to K^(+)K^(-) and K_(S)^(0)K_(S)^(0). No evidence of this resonance is observed, and 90% confidence level upper limits on the product of the branching fractions for J/ψ→γf_(J)(2220) and f_(J)(2220)→K^(+)K^(-)(K_(S)^(0)K_(S)^(0)) as a function of spin and helicity are set at the level of 10^(-5), below the central values reported by the Mark III experiment.

PhysicsParticle physicsMeson010308 nuclear & particles physicsBranching fractionElectron–positron annihilationHadronGeneral Physics and AstronomyQuarkonium01 natural sciencesHelicityParticle identificationNuclear physicsParticle decay0103 physical sciences010306 general physicsPhysical Review Letters
researchProduct

Search for a low-mass scalar Higgs boson decaying to a tau pair in single-photon decays of Y(1S)

2013

We search for a low-mass scalar CP-odd Higgs boson, A(0), produced in the radiative decay of the upsilon resonance and decaying into a tau(+)tau(-) pair: Y(1S) -> gamma A(0). The production of Y(1S) mesons is tagged by Y(2S) -> pi(+)pi(-) Y(1S) transitions, using a sample of (98.3 +/- 0.9) x 10(6) Y(2S) mesons collected by the BABAR detector. We find no evidence for a Higgs boson in the mass range 3: 5 <= m(A)0 <= 9: 2 GeV, and combine these results with our previous search for the tau decays of the light Higgs in radiative Y(3S) decays, setting limits on the coupling of A(0) to the b (b) over bar quarks in the range 0.09-1.9. Our measurements improve the constraints on the parameters of th…

QuarkParticle physicsNuclear and High Energy PhysicsMesonElectron–positron annihilationScalar (mathematics)FOS: Physical sciencesQuarkoniumPhoton energy01 natural sciencesSupersymmetric modelStandard ModelHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPhysicsHiggs bosons010308 nuclear & particles physicsPACS: 14.80.Da 12.60.Fr 12.60.Jv 13.20.GdHigh Energy Physics::PhenomenologyParticle physicsBABAR detectorExtensions of electroweak Higgs sectorQuarkoniumHEPExtensions of electroweak Higgs sector; Supersymmetric models; Decays of J/psi Upsilon and other quarkoniaSupersymmetric modelsDecays of J/psi Upsilon and other quarkoniaBosons de HiggsBaBarHiggs bosonLeptonic decaysFísica nuclearHigh Energy Physics::ExperimentFísica de partículesExperiments
researchProduct