Search results for "quasidisk"

showing 3 items of 3 documents

Singularities in L^p-quasidisks

2021

We study planar domains with exemplary boundary singularities of the form of cusps. A natural question is how much elastic energy is needed to flatten these cusps; that is, to remove singularities. We give, in a connection of quasidisks, a sharp integrability condition for the distortion function to answer this question. peerReviewed

PhysicsCusp (singularity)Distortion functionPure mathematicsquasidiskmappings of integrable distortionElastic energyBoundary (topology)Of the formArticlesCuspquasiconformalConnection (mathematics)funktioteoriaPlanarcuspGravitational singularityAnnales Fennici Mathematici
researchProduct

Sobolev Extension on Lp-quasidisks

2021

AbstractIn this paper, we study the Sobolev extension property of Lp-quasidisks which are the generalizations of classical quasidisks. After that, we also find some applications of this property.

Pure mathematicsSobolev extension domainsProperty (philosophy)Lp-quasidisksMathematics::Complex Variables010102 general mathematicsMathematics::Analysis of PDEs0102 computer and information sciencesExtension (predicate logic)01 natural sciencesPotential theoryfunktioteoriaSobolev spacehomeomorphism of finite distortion010201 computation theory & mathematics0101 mathematicsfunktionaalianalyysiAnalysisMathematicsPotential Analysis
researchProduct

Sobolev homeomorphic extensions onto John domains

2020

Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schoenflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous $W^{1,2}$-extension but not even a homeomorphic $W^{1,1}$-extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents $p<2$. John disks, being one sided quasidisks, are of fundamental importance in Geometric Function Theory.

funktioteoriaMathematics::Dynamical SystemsSobolev extensionsMathematics - Complex Variables46E35 58E20quasidisksFOS: MathematicsMathematics::General TopologySobolev homeomorphismsComplex Variables (math.CV)John domainsfunktionaalianalyysiMathematics::Geometric Topology
researchProduct