Search results for "qutrit"
showing 10 items of 13 documents
Optical quantum information processing and storage
2018
Here we report our recent experimental progresses in optical quantum information processing. In particular, the following topics are included. First, we extend the heralding scheme to multi-mode states and demonstrate heralded creation of qutrit states. Next, we demonstrate storage of single-photon states and synchronized release of them. Then, we demonstrate real-time acquisition of quadrature values of heralded states by making use of an exponentially rising shape of wave-packets. Finally, we demonstrate cluster states in an arbitrarily long chain in the longitudinal direction.
Universality of Schmidt decomposition and particle identity
2017
Schmidt decomposition is a widely employed tool of quantum theory which plays a key role for distinguishable particles in scenarios such as entanglement characterization, theory of measurement and state purification. Yet, it is held not to exist for identical particles, an open problem forbidding its application to analyze such many-body quantum systems. Here we prove, using a newly developed approach, that the Schmidt decomposition exists for identical particles and is thus universal. We find that it is affected by single-particle measurement localization and state overlap. We study paradigmatic two-particle systems where identical qubits and qutrits are located in the same place or in sep…
Emulation of n-photon Jaynes Cummings and Anti-Jaynes-Cummings models via parametric modulation of cyclic qutrit
2019
We study a circuit QED setup involving a single cavity mode and a cyclic qutrit whose parameters are time modulated externally. It is shown that in the dispersive regime this system behaves as a versatile platform to implement effective $n$-photon Jaynes-Cummings (JC) and anti-Jaynes-Cummings (AJC) models by suitably setting the modulation frequency. The atomic levels and the cavity Fock states involved in the effective Hamiltonians can be controlled through adjustment of the system parameters, and different JC and AJC interactions can be implemented simultaneously using multitone modulations. Moreover, one can implement some models that go beyond simple JC and AJC-like interaction, such as…
Bounds on the entanglement of two-qutrit systems from fixed marginals
2019
We discuss the problem of characterizing upper bounds on entanglement in a bipartite quantum system when only the reduced density matrices (marginals) are known. In particular, starting from the known two-qubit case, we propose a family of candidates for maximally entangled mixed states with respect to fixed marginals for two qutrits. These states are extremal in the convex set of two-qutrit states with fixed marginals. Moreover, it is shown that they are always quasidistillable. As a by-product we prove that any maximally correlated state that is quasidistillable must be pure. Our observations for two qutrits are supported by numerical analysis.
Model of Qubit in Multi-Electron Quantum Dot
2001
Speeding up antidynamical Casimir effect with nonstationary qutrits
2017
The antidynamical Casimir effect (ADCE) is a term coined to designate the coherent annihilation of excitations due to resonant external perturbation of system parameters, allowing for extraction of quantum work from nonvacuum states of some field. Originally proposed for a two-level atom (qubit) coupled to a single cavity mode in the context of nonstationary quantum Rabi model, it suffered from very low transition rate and correspondingly narrow resonance linewidth. In this paper we show analytically and numerically that the ADCE rate can be increased by at least one order of magnitude by replacing the qubit by an artificial three-level atom (qutrit) in a properly chosen configuration. For …
Heralded creation of photonic qudits from parametric down conversion using linear optics
2017
We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of two-mode optical states with a fixed total photon number $n$ based on weakly squeezed two-mode squeezed state resources (obtained via weak parametric down conversion), linear optics, and photon detection. Arbitrary $d$-level (qudit) states can be created this way where $d=n+1$. Furthermore, we experimentally demonstrate our scheme for $n=2$. The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For illustration and with regards to pos…
Landau-Majorana-Stuckelberg-Zener dynamics driven by coupling for two interacting qutrit systems
2019
A time-dependent model of two interacting spin qutrits is analyzed is analyzed and solved. The two interacting qutrits are subjected to a longitudinal field linearly varying over time as in the Landau-Majorana-St\"uckelberg- Zener (LMSZ) scenario. Although a transverse field is absent, we show the occurrence of LMSZ transitions assisted by the coupling between the two spin-qutrits. Such a physical effect permits us to estimate experimentally the coupling strength between the spins and allows the generation of entangled states of the two qutrits by appropriately setting the slope of the ramp. Furthermore, the possibility of local and nonlocal control as well as the existence of dark states o…
Hybrid quantum repeater for qudits
2017
We present a "hybrid quantum repeater" protocol for the long-distance distribution of atomic entangled states beyond qubits. In our scheme, imperfect noisy entangled pairs of two qudits, i.e., two discrete-variable $d$-level systems, each of, in principle, arbitrary dimension $d$, are initially shared between the intermediate stations of the channel. This is achieved via local, sufficiently strong light-matter interactions, involving optical coherent states and their transmission after these interactions, and optical measurements on the transmitted field modes, especially (but not restricted to) efficient continuous-variable homodyne detections ("hybrid" here refers to the simultaneous expl…
Quantum enhancement of qutrit dynamics through driving field and photonic-band-gap crystal
2022
A comparative study of a qutrit (three-level atomic system) coupled to a classical field in a typical Markovian reservoir (free space) and in a photonic band-gap (PBG) crystal is carried out. The aim of the study is to assess the collective impact of structured environment and classical control of the system on the dynamics of quantum coherence, non-Markovianity, and estimation of parameters which are initially encoded in the atomic state. We show that the constructive interplay of PBG material as a medium and classical driving field as a part of system results in a significant enhancement of all the quantum traits of interest, compared to the case when the driven qutrit is in a Markovian e…