Search results for "radioactive ion"

showing 10 items of 43 documents

Mirror energy differences above the 0f7/2 shell: First γ-ray spectroscopy of the Tz = −2 nucleus 56Zn

2021

5 pags., 4 figs.

Nuclear and High Energy Physicssinkki (metallit)QC1-999Nuclear Theory01 natural sciencesnucleon removalmirror nuclei0103 physical sciencesSubatomic Physicsmedicine010306 general physicsSpectroscopyradioactive ion beamsNuclear ExperimentNucleonsPhysics[PHYS]Physics [physics]isotoopitValence (chemistry)Isovector010308 nuclear & particles physicsYrastPhysicsFísicaSymmetry Breakingmedicine.anatomical_structureisospin symmetryshell-model calculationsExcited stateEnergy DifferenceAtomic physicsMultipole expansionydinfysiikkaNucleusBeam (structure)
researchProduct

Radioactive ion beams in the region of 100Sn and 78Ni at the NSCL

2004

The regions around the doubly magic nuclei 100 Sn and 78 Ni are of great interest from a nuclear structure standpoint. These nuclei also play a key role in the astrophysical rp- and r-processes, respectively. Recently, nuclei in these regions were studied at the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University.

Nuclear physicsRadioactive ion beamsPhysicsNuclear and High Energy PhysicsSuperconducting cyclotronlawCyclotronNuclear structureMAGIC (telescope)Atomic physicslaw.inventionNuclear Physics A
researchProduct

Nuclear structure physics at GSI-challenges and perspectives

2001

Some characteristic examples from the ongoing GSI nuclear structure research programme are presented such as recent experimental results from nuclear reactions with exotic beams to explore the structure of halo nuclei, direct mass measurements in the storage ring, and the structure of heavy-elements. A brief outline of a next generation exotic beam facility will be given.

Nuclear reactionPhysicsRadioactive ion beamsNuclear physicslawNuclear TheoryNuclear structurePhysics::Accelerator PhysicsParticle acceleratorSuperheavy ElementsNuclear ExperimentStorage ringlaw.inventionAIP Conference Proceedings
researchProduct

2021

Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separati…

PhysicsRadioactive ion beamsCancer ResearchParticle therapyProtonIsotopemedicine.medical_treatmentSynchrotron030218 nuclear medicine & medical imaginglaw.inventionIonNuclear physics03 medical and health sciences0302 clinical medicinePositronOncologyFragmentation (mass spectrometry)law030220 oncology & carcinogenesismedicineFrontiers in Oncology
researchProduct

Development of the CRIS (Collinear Resonant Ionisation Spectroscopy) beam line

2012

The CRIS (Collinear Resonant Ionisation Spectroscopy) beam line is a new experimental set up at the ISOLDE facility at CERN. CRIS is being constructed for highresolution laser spectroscopy measurements on radioactive isotopes. These measurements can be used to extract nuclear properties of isotopes far from stability. The CRIS beam line has been under construction since 2009 and testing of its constituent parts have been performed using stable and radioactive ion beams, in preparation for its first on-line run. This paper will present the current status of the CRIS experiment and highlight results from the recent tests. ispartof: pages:012070-6 ispartof: Journal of Physics: Conference Serie…

PhysicsRadioactive ion beamsHistoryLarge Hadron ColliderNuclear structureCRIS beam line[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciences010305 fluids & plasmasComputer Science ApplicationsEducationNuclear physicsBeamlineIonization0103 physical sciencesPhysics::Accelerator PhysicsCollinear resonant ionisation spectroscopyAtomic physicsNuclear Experiment010306 general physicsSpectroscopyComputingMilieux_MISCELLANEOUS
researchProduct

Shape ofAr44: Onset of deformation in neutron-rich nuclei nearCa48

2009

The development of deformation and shape coexistence in the vicinity of doubly magic $^{48}\mathrm{Ca}$, related to the weakening of the $N=28$ shell closure, was addressed in a low-energy Coulomb excitation experiment using a radioactive $^{44}\mathrm{Ar}$ beam from the SPIRAL facility at GANIL. The ${2}_{1}^{+}$ and ${2}_{2}^{+}$ states in $^{44}\mathrm{Ar}$ were excited on $^{208}\mathrm{Pb}$ and $^{109}\mathrm{Ag}$ targets at two different beam energies. $B(E2)$ values between all observed states and the spectroscopic quadrupole moment of the ${2}_{1}^{+}$ state were extracted from the differential Coulomb excitation cross sections, indicating a prolate shape of the $^{44}\mathrm{Ar}$ n…

PhysicsRadioactive ion beamsNuclear and High Energy PhysicsAngular momentum010308 nuclear & particles physicsNuclear TheoryProlate spheroidCoulomb excitation01 natural sciencesMean field theoryExcited state0103 physical sciencesQuadrupoleNeutronAtomic physics010306 general physicsPhysical Review C
researchProduct

New subshell closure atN=58emerging in neutron-rich nuclei beyondNi78

2010

The structure of neutron-rich nuclei beyond $^{78}\mathrm{Ni}$ was studied using postaccelerated radioactive beams of $^{83,84,85}\mathrm{Ga}$ utilizing $\ensuremath{\beta} \ensuremath{\gamma}$ and $\ensuremath{\beta}\ensuremath{-}n \ensuremath{\gamma}$ spectroscopy. Our data, when combined with energy level systematics, suggests a possible new spherical subshell closure at $N=58$ is created by the nearly degenerated $\ensuremath{\nu}3{s}_{1/2}$ and $\ensuremath{\nu}2{d}_{5/2}$ orbitals being well separated from other orbitals above $N=50$. The near degeneracy of these states could be evidenced by isomerism in this region. The energies of the ${2}_{1}^{+}$ and proposed ${4}_{1}^{+}$ states …

PhysicsRadioactive ion beamsNuclear and High Energy PhysicsIsotopes of germaniumAtomic orbitalDouble beta decayNuclear structureGamma spectroscopyNeutronAtomic physicsSpectroscopyPhysical Review C
researchProduct

CERN's longest serving experimental facility

2004

The On-Line Isotope Separator ISOLDE has operated continuously at CERN since 1967. Today ISOLDE and its Post accelerator REX-ISOLDE, dedicated to the production of a large variety of radioactive ion beams with energies from 1 keV/u up to 3.1 MeV/u, are used for a great number of different experiments in the fields of nuclear and atomic physics, nuclear astrophysics, material physics and life sciences. The facility, originally located at the CERNs first accelerator Synchrocyclotron (SC), has been located at the Proton-Synchrotron Booster (PSB) since 1992. Long and outstanding operation of ISOLDE has had important impact on the evolution of nuclear physics and its applications. ISOLDE has bee…

PhysicsRadioactive ion beamsNuclear physicsLarge Hadron ColliderSynchrocyclotronEarly startNuclear astrophysicsGeneral Physics and AstronomyMaterial physicsPhysics Reports
researchProduct

Optimizing charge breeding techniques for ISOL facilities in Europe: conclusions from the EMILIE project

2015

ThuM07; International audience; The present paper summarizes the results obtained from the past few years in the framework ofthe Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIEproject aims at improving the charge breeding techniques with both Electron Cyclotron ResonanceIon Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam(RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS chargebreeders is being developed, for making an optimal use of the capabilities of CW post-acceleratorsof the future facilities. Such a debunching technique should eventually resolve duty cycle andtime st…

Radioactive ion beamsCharge injectionIon beamNuclear engineering[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]electron beam ion sources01 natural sciences010305 fluids & plasmasNuclear physics0103 physical scienceselectron cyclotron resonance ion sourcesTime structureCharge injectionInstrumentationElectrodes010302 applied physicsta114ta213SodiumCharge (physics)charge breedingIon beamsEnvironmental scienceBeam (structure)Radioactive beams
researchProduct

Elastic scattering studies of 16C at 50 MeV/A on proton and deuteron targets with the CHIMERA multidetector at INFN-LNS

2012

At the Laboratori Nazionali del Sud (LNS) in Catania (Italy), light radioactive ion beams have been produced through the In Flight Fragmentation method, using 18O and 13C at 55 MeV/A as primary beams impinging on a 9Be production target. Elastic scattering angular distributions of 16C+p and 16C+d at 50 MeV/A, 10Be+p at 56 MeV/A and 13B+d at 52 MeV/A systems were measured by using the CHIMERA (Charge Heavy Ion Mass and Energy Resolving Array) multidetector and kinematical coincidence technique. The experimental data are fitted by using the optical model. © Published under licence by IOP Publishing Ltd.

Radioactive ion beamsElastic scatteringPhysicsradioactive ion beamHistoryPhysics::Medical Physicselastic scatteringtaggingCoincidenceComputer Science ApplicationsEducationNuclear physicsPhysics and Astronomy (all)DeuteriumFragmentation (mass spectrometry)Physics::Accelerator PhysicsHeavy ionAtomic physicsNuclear Experiment
researchProduct