Search results for "rain"

showing 10 items of 10658 documents

Une structure o-minimale sans décomposition cellulaire

2008

Resume Nous construisons une extension o-minimale du corps des nombres reels qui n'admet pas la propriete de decomposition cellulaire en classe C ∞ . Pour citer cet article : O. Le Gal, J.-P. Rolin, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

010101 applied mathematicsCombinatorics010102 general mathematicsCell structureGeneral MedicineDecomposition method (constraint satisfaction)0101 mathematicsAlgebraic number field01 natural sciencesMathematicsComptes Rendus Mathematique
researchProduct

Inverse estimation of model parameters for newborn brain cooling process simulations

2019

In this work, a three-dimensional simplified computational model was built to simulate the passive thermo-physiological response of part of a newborn’s head for neonate’s selective brain cooling. Both metabolicheat generation and blood perfusion were considered. The set of model parameters was selected anda sensitivity study was carried out. Analysis of dimensionless sensitivity coefficients showed that the mostimportant are: the contact thermal resistance between the cool-cap and skin, the thermal resistance ofthe plastic wall material, and deep (arterial) blood temperature. The function specification method wasapplied to estimate the value of the contact resistance. Two, four and six comp…

010101 applied mathematicsbioheatinverse methodfunction specification method0101 mathematics01 natural sciencesbrain coolingComputer Assisted Methods in Engineering and Science
researchProduct

Experimental investigation on different rainfall energy harvesting structures

2018

In this paper proposes an experimental comparison between different rainfall harvesting devices and the study of the corresponding electrical rectifying circuit. More in detail, three harvesting structures are considered: the cantilever, the bridge and the floating circle. For each of the proposed structure, different waveforms have been acquired and discussed. The processed data have been compared in order to suggest the best choice for the rectifying circuit, from the simplest one to the most endorsed in the technical literature.

010302 applied physicsCantileverComputer scienceRenewable Energy Sustainability and the EnvironmentRainfall energy harvester02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici021001 nanoscience & nanotechnology01 natural sciencesTechnical literatureBridge (nautical)Settore ING-IND/31 - ElettrotecnicaTransducer0103 physical sciencesAutomotive EngineeringElectronic engineeringWaveform0210 nano-technologyEnergy harvestingPiezoelectric effectHardware_LOGICDESIGN
researchProduct

Identification of induction motor thermal model for improved drivetrain design

2016

Selection of components of electric drivetrains is not only based on evaluating their ability to perform according to mechanical specifications, but — what is equally important — on assessing their thermal protection limits. These are typically affected by electrical and thermal properties of motors and drives. Although rated parameters (such as power, torque, speed, etc.) are easily accessible in catalogs of equipment producers, more specific properties like mass / length of copper winding, heat dissipation factor, rotor / stator dimensions etc. are not available to customers. Therefore, effective selection of drivetrain components is limited due to the lack of sufficient data and the need…

010302 applied physicsEngineeringStatorRotor (electric)business.industry020208 electrical & electronic engineeringDrivetrainControl engineering02 engineering and technology01 natural sciencesAutomotive engineeringlaw.inventionMotor driveDuty cyclelaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringTorqueDesign processbusinessInduction motor2016 XXII International Conference on Electrical Machines (ICEM)
researchProduct

Laser Ultrasonics Inspection for Defect Evaluation on Train Wheel

2019

Abstract Passengers’ safety and in-service life of wheelset axles play an important role in railway vehicles. For this reason, periodic inspections are necessary. Among non-destructive techniques, ultrasonic ones are widely applied in this field. The main disadvantage of conventional ultrasonic techniques is that the overall inspection of wheels requires the train to be put out-of-service and disassembly each part, which is time-consuming and expensive. In this paper, a non-conventional non-contact laser ultrasonic inspection for train wheels is proposed. The proposed method uses a laser interferometer to receive the ultrasonic wave without contact. The receiving system allows choosing the …

010302 applied physicsLaser ultrasonicsUltrasonic applications Ultrasonic waves Laser ultrasonicsComputer scienceMechanical EngineeringAcousticsUltrasonic testingNon-destructive testing Non-contact techniques Laser ultrasonic Train wheel inspectionCondensed Matter PhysicsLaser01 natural scienceslaw.inventionAxleInterferometrySettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineComplex geometrylaw0103 physical sciencesGeneral Materials ScienceUltrasonic sensor010301 acousticsReliability (statistics)
researchProduct

Structural, optical, and luminescence properties of ZnO:Ga optical scintillation ceramic

2018

This paper discusses the characteristics of ZnO and ZnO:Ga ceramics fabricated by uniaxial hot pressing. The short-wavelength transmission limit of zinc oxide ceramics is in the 370-nm region; the long-wavelength limit is determined by the free-charge-carrier concentration and lies in the interval from 5 to 9 μm. The total transmittance of such ceramics in the visible and near-IR regions is about 70% when the sample is 0.5 mm thick. The luminescence spectrum is represented by a broad emission band with maximum at 580 nm, having a defect nature. The introduction of 0.03–0.1 mass % gallium into the zinc oxide structure inhibits grain growth and increases the free-charge-carrier concentration …

010302 applied physicsMaterials scienceApplied MathematicsExcitonGeneral EngineeringAnalytical chemistrychemistry.chemical_elementZincHot pressing01 natural sciencesAtomic and Molecular Physics and Optics010309 opticsComputational MathematicsGrain growthchemistryvisual_art0103 physical sciencesTransmittancevisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]CeramicGalliumLuminescenceJournal of Optical Technology
researchProduct

Characteristics of industrially manufactured amorphous hydrogenated carbon (a-C:H) depositions on high-density polyethylene

2016

Industrially high-density polyethylene (HDPE) was successively covered by two types of amorphous hydrogenated carbon (a-C:H) films, one more flexible (f-type) and the other more robust (r-type). The films have been grown by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. The surface morphology of both types has been studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Contact angle measurements and Raman spectroscopy analysis were done to investigate the surface wettability and carbon chemical composition. Both types display similar morphology and grain growth pattern. Contact angle measurements revealed surfa…

010302 applied physicsMaterials scienceChemistry (all)Settore FIS/01 - Fisica Sperimentalechemistry.chemical_elementNanotechnology02 engineering and technologyGeneral ChemistryChemical vapor depositionPolyethylene021001 nanoscience & nanotechnology01 natural sciencesAmorphous solidContact angleGrain growthchemistry.chemical_compoundCarbon filmAmorphous carbonChemical engineeringchemistry0103 physical sciencesGeneral Materials Science0210 nano-technologyCarbon
researchProduct

Temperature Coefficients of Crystal Defects in Multicrystalline Silicon Wafers

2020

This article investigates the influence of crystallographic defects on the temperature sensitivity of multicrystalline silicon wafers. The thermal characteristics of the implied open-circuit voltage is assessed since it determines most of the total temperature sensitivity of the material. Spatially resolved temperature-dependent analysis is performed on wafers from various brick positions; intragrain regions, grain boundaries, and dislocation clusters are examined. The crystal regions are studied before and after subjecting the wafers to phosphorus gettering, aiming to alter the metallic impurity concentration in various regions across the wafers. Most intragrain regions and grain boundarie…

010302 applied physicsMaterials scienceCondensed matter physics02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCrystallographic defectElectronic Optical and Magnetic MaterialsCrystalGetterImpurity0103 physical sciencesWaferGrain boundaryElectrical and Electronic EngineeringDislocation0210 nano-technologyIEEE Journal of Photovoltaics
researchProduct

EBSD, XRD and SRS characterization of a casting Al-7wt%Si alloy processed by equal channel angular extrusion: Dislocation density evaluation

2019

Abstract Aluminum‑silicon (Al Si) alloys of high silicon contents are composite materials; they are used whenever high casting properties are required. They are slightly ductile below 8wt%Si. An increase in ductility can be obtained by refining Si-crystals in elaboration or by a further hot working. In the present work, an Al-7wt%Si alloy was processed by Equal Channel Angular Extrusion (ECAE) at temperatures 20 °C and 160 °C up to three passes. The die was formed by two cylindrical channels with characteristic angles Φ = 110° and Ψ = 0. EBSD, X ray diffraction (XRD) and Strain Rate Sensitivity (SRS) were used to characterize the microstructure and the mechanical properties. High levels of …

010302 applied physicsMaterials scienceEqual channel angular extrusionMechanical Engineering02 engineering and technologyStrain rate021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesCastingHot workingMechanics of Materials0103 physical sciencesGeneral Materials ScienceComposite materialDislocation0210 nano-technologyDuctilityElectron backscatter diffractionMaterials Characterization
researchProduct

Microstructure and electric properties of low-pressure plasma sprayed β-FeSi 2 based coatings

2017

Abstract Thermoelectric material β-FeSi 2 based coating was fabricated by the technique low-pressure plasma spray (LPPS) on the Al 2 O 3 substrate from different alloy powders. During the process LPPS, the phase transformation had occurred through the peritectoid, eutectoid reaction and their inverse reaction. The grain size of the as-sprayed β-FeSi 2 doped Co coatings was reduced comparing with the original feedstock powders, which implied the thermal conductivity could effectively decreased by the LPPS process. The room temperature electrical conductivity showed metal and semiconductor properties on the as-sprayed and annealed coatings. This method and the results could solve the problems…

010302 applied physicsMaterials scienceMetallurgyAlloy02 engineering and technologySurfaces and InterfacesGeneral Chemistryengineering.material021001 nanoscience & nanotechnologyCondensed Matter PhysicsThermoelectric materialsMicrostructure01 natural sciencesGrain sizeSurfaces Coatings and FilmsThermal conductivityCoating0103 physical sciencesMaterials ChemistryengineeringComposite material0210 nano-technologyThermal sprayingEutectic systemSurface and Coatings Technology
researchProduct