Search results for "rat-liver"

showing 3 items of 3 documents

Coordinated induction of drug transporters and phase I and II metabolism in human liver slices

2008

Although regulation of phase I drug metabolism in human liver is relatively well studied, the regulation of phase II enzymes and of drug transporters is incompletely characterized. Therefore, we used human liver slices to investigate the PXR, CAR and AhR-mediated induction of drug transporters and phase I and II metabolic enzymes. Precision-cut human liver slices were incubated for 5 or 24 h with prototypical inducers: phenobarbital (PB) (50 mu M) for CAR, beta-naphthoflavone (BNF) (25 mu M) for AhR, and rifampicin (RIF) (10 mu M) for PXR, and gene expression of the phase I enzymes CYP1A1, 1A2, 3A4, 3A5, 2136, 2A6, the phase II enzymes UGT1A1 and 1A6, and the transporters MRP2, MDR1, BSEP, …

DIFFERENTIAL REGULATIONQUANTITATIVE RT-PCRRAT-LIVERGene ExpressionPharmaceutical Sciencedrug transportersIn Vitro TechniquesPharmacologydigestive systemCytochrome P-450 Enzyme SystemUDP-GLUCURONOSYLTRANSFERASE 1A1Constitutive androstane receptorHumansSTELLATE CELL ACTIVATIONEnzyme inducerinductionliver slicesCONSTITUTIVE ANDROSTANE RECEPTORchemistry.chemical_classificationPregnane X receptorbiologyCYP3A4Multidrug resistance-associated protein 2TransporterPRIMARY HUMAN HEPATOCYTESMetabolic Detoxication Phase IIdrug metabolismEnzymeLiverPharmaceutical PreparationsBiochemistrychemistryEnzyme Inductionbiology.proteinMetabolic Detoxication Phase IPREGNANE-X-RECEPTORCarrier ProteinsPROTOTYPICAL INDUCERSDrug metabolismBILE-ACIDEuropean Journal of Pharmaceutical Sciences
researchProduct

Cross-species transcriptomic analysis elucidates constitutive aryl hydrocarbon receptor activity

2014

Background Research on the aryl hydrocarbon receptor (AHR) has largely focused on variations in toxic outcomes resulting from its activation by halogenated aromatic hydrocarbons. But the AHR also plays key roles in regulating pathways critical for development, and after decades of research the mechanisms underlying physiological regulation by the AHR remain poorly characterized. Previous studies identified several core genes that respond to xenobiotic AHR ligands across a broad range of species and tissues. However, only limited inferences have been made regarding its role in regulating constitutive gene activity, i.e. in the absence of exogenous ligands. To address this, we profiled transc…

MaleHEPATIC GENE-EXPRESSION413 Veterinary scienceMedical and Health SciencesTranscriptomeDIOXIN RECEPTORMice0302 clinical medicineTCDD-induced toxicityReceptorsTranscriptional regulationABNORMAL LIVER DEVELOPMENT2.1 Biological and endogenous factorsCluster AnalysisAetiologyReceptorAH RECEPTORIN-VIVOAryl hydrocarbon receptorGeneticsRegulation of gene expression0303 health sciencesBiological Sciencesrespiratory systemCore-gene batteryAryl HydrocarbonOrgan Specificity030220 oncology & carcinogenesisAHR endogenous ligands2378-TETRACHLORODIBENZO-P-DIOXIN TCDDSignal transductionResearch ArticleBiotechnologySignal TransductionProtein BindingBioinformatics1.1 Normal biological development and functioningeducationRAT-LIVERConstitutive gene expressionBiologyMICE LACKING03 medical and health sciencesSpecies SpecificityUnderpinning researchInformation and Computing SciencesGeneticsAnimals030304 developmental biologyAryl hydrocarbon receptor activityGene Expression ProfilingComputational BiologyAryl hydrocarbon receptorCELL-CYCLE CONTROLRatsrespiratory tract diseasesGene expression profilingReceptors Aryl HydrocarbonGene Expression RegulationSUBCHRONIC EXPOSUREbiology.proteinDigestive DiseasesTranscriptome
researchProduct

A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPARα-mediated upregulation of SREBP-2 target genes in the liver.: ThB …

2011

International audience; Peroxisomal 3-ketoacyl-CoA thiolase B (Thb) catalyzes the final step in the peroxisomal β-oxidation of straight-chain acyl-CoAs and is under the transcription control of the nuclear hormone receptor PPARα. PPARα binds to and is activated by the synthetic compound Wy14,643 (Wy). Here, we show that the magnitude of Wy-mediated induction of peroxisomal β-oxidation of radiolabeled (1-(14)C) palmitate was significantly reduced in mice deficient for Thb. In contrast, mitochondrial β-oxidation was unaltered in Thb(-/-) mice. Given that Wy-treatment induced Acox1 and MFP-1/-2 activity at a similar level in both genotypes, we concluded that the thiolase step alone was respons…

MaleMESH: HepatomegalyPalmitatesMESH : PyrimidinesMESH : Gene DeletionBiochemistryelement-binding proteinsMESH : Acetyl-CoA C-AcyltransferaseMiceMESH: Up-RegulationMESH: AnimalsMESH : Up-RegulationMESH: Lipid Metabolism0303 health sciencesMESH : Gene Expression RegulationThiolase030302 biochemistry & molecular biologyGeneral MedicineMESH : HepatomegalyUp-Regulationzellweger-syndromePeroxisome ProliferatorsMESH: Peroxisome ProliferatorsHepatomegalySterol Regulatory Element Binding Protein 2peroxisomal 3-ketoacyl-CoA thiolase BMESH: Mitochondria3-oxoacyl-coa thiolaseLathosterolfatty-acid oxidationrat-liverMESH: Sterol Regulatory Element Binding Protein 203 medical and health sciencesMESH : Sterol Regulatory Element Binding Protein 2HumansPPAR alphaMESH : Peroxisome Proliferators[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyPPARaVLAGMESH : Oxidation-ReductionFatty Acid Oxidation.MESH: HumansCholesterolMESH : HumanscholesterolLipid MetabolismMESH: PeroxisomesSterol regulatory element-binding proteinchemistryMESH: PyrimidinesCholesterol; Micro-array analysis; Peroxisomal 3-ketoacyl-CoA thiolase B; PPARα and SREBP-2; Wy14643Fatty Acid OxidationGene DeletionMESH: LiverMESH: Oxidation-ReductionMESH: Signal TransductionMESH: Mice KnockoutVoeding Metabolisme en Genomicachemistry.chemical_compoundMESH: CholesterolMESH : Lipid MetabolismWy14MESH : PalmitatesMESH: PPAR alphaMESH : CholesterolMice Knockoutneuronal migration643PeroxisomeAcetyl-CoA C-AcyltransferaseMESH: Gene Expression RegulationMetabolism and GenomicsMitochondriaLiverBiochemistryMicro-array analysisMetabolisme en GenomicaACOX1Nutrition Metabolism and GenomicsMESH : MitochondriaOxidation-ReductionSignal Transductionacyl-coa oxidasecholesterol-synthesisMESH : MaleMESH : PPAR alphaPeroxisome ProliferationPPARα and SREBP-2Biologybeta-oxidationVoedingproliferator-activated receptorsMESH : MicePeroxisomesAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Mice030304 developmental biologySCP2NutritionMESH : Signal TransductionMESH : LiverMESH: PalmitatesMESH: MalePyrimidinesMESH: Acetyl-CoA C-AcyltransferaseGene Expression RegulationMESH: Gene DeletionMESH : Mice KnockoutMESH : AnimalsMESH : Peroxisomes
researchProduct