Search results for "rate of convergence"

showing 10 items of 69 documents

Convergence Properties of Genuine Bernstein–Durrmeyer Operators

2018

The genuine Bernstein–Durrmeyer operators have notable approximation properties, and many papers have been written on them. In this paper, we introduce a modified genuine Bernstein–Durrmeyer operators. Some approximation results, which include local approximation, error estimation in terms of the modulus of continuity and weighted approximation is obtained. Also, a quantitative Voronovskaya-type approximation will be studied. The convergence of these operators to certain functions is shown by illustrative graphics using MAPLE algorithms.

MapleRate of convergenceConvergence (routing)engineeringApplied mathematicsengineering.materialGraphicsModulus of continuityMathematics
researchProduct

Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains

2010

We use the scale of Besov spaces B^\alpha_{\tau,\tau}(O), \alpha>0, 1/\tau=\alpha/d+1/p, p fixed, to study the spatial regularity of the solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains O\subset R^d. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.

Mathematics::Functional AnalysisSmoothness (probability theory)General MathematicsProbability (math.PR)Mathematics::Analysis of PDEsScale (descriptive set theory)Numerical Analysis (math.NA)Lipschitz continuitySobolev spaceStochastic partial differential equation60H15 Secondary: 46E35 65C30WaveletRate of convergenceBounded functionFOS: MathematicsApplied mathematicsMathematics - Numerical AnalysisMathematics - ProbabilityMathematicsStudia Mathematica
researchProduct

A Novel Artificial Neural Network (ANN) Using The Mayfly Algorithm for Classification

2021

Training of Artificial Neural Networks (ANNs) have been improved over the years using meta heuristic algorithms that introduce randomness into the training method but they might be prone to falling into a local minima in a high-dimensional space and have low convergence rate with the iterative process. To cater for the inefficiencies of training such an ANN, a novel neural network is presented in this paper using the bio-inspired algorithm of the movement and mating of the mayflies. The proposed Mayfly algorithm is explored as a means to update weights and biases of the neural network. As compared to previous meta heuristic algorithms, the proposed approach finds the global minima cost at f…

Maxima and minimaIterative and incremental developmentAuthenticationArtificial neural networkRate of convergenceComputer scienceVDP::Technology: 500Benchmark (computing)Particle swarm optimizationAlgorithmRandomness
researchProduct

Robust adaptive algorithm with low computational cost

2006

An adaptive algorithm, which is robust to impulsive noise, is proposed. The cost function underlying this algorithm contains a parameter that controls the immunity to impulsive noise and can be easily adapted. Moreover, weight updating involves a nonlinear function, which recently has been shown to have an efficient hardware implementation. The proposed adaptive algorithm has been successfully tested in terms of accuracy and convergence on a system-identification simulation.

NoiseSignal processingComputational complexity theoryRate of convergenceAdaptive algorithmControl theoryConvergence (routing)System identificationFunction (mathematics)Electrical and Electronic EngineeringAlgorithmMathematicsElectronics Letters
researchProduct

Numerical methods for nonlinear inverse problems

1996

AbstractInverse problems of distributed parameter systems with applications to optimal control and identification are considered. Numerical methods and their numerical analysis for solving this kind of inverse problems are presented, main emphasis being on the estimates of the rate of convergence for various schemes. Finally, based on the given error estimates, a two-grid method and related algorithms are introduced, which can be used to solve nonlinear inverse problems effectively.

Nonlinear inverse problemInverse problemsMathematical optimizationFinite element methodNumerical analysisApplied MathematicsInverse problemOptimal controlFinite element methodTwo-grid methodIdentification (information)Computational MathematicsRate of convergenceDistributed parameter systemError estimatesMathematicsJournal of Computational and Applied Mathematics
researchProduct

The MAST-edge centred lumped scheme for the flow simulation in variably saturated heterogeneous porous media

2012

A novel methodology is proposed for the solution of the flow equation in a variably saturated heterogeneous porous medium. The computational domain is descretized using triangular meshes and the governing PDEs are discretized using a lumped in the edge centres numerical technique. The dependent unknown variable of the problem is the piezometric head. A fractional time step methodology is applied for the solution of the original system, solving consecutively a prediction and a correction problem. A scalar potential of the flow field exists and in the prediction step a MArching in Space and Time (MAST) formulation is applied for the sequential solution of the Ordinary Differential Equation of…

Numerical AnalysisPhysics and Astronomy (miscellaneous)DiscretizationApplied MathematicsLinear systemScalar potentialGeometryFinite element methodSettore ICAR/01 - IdraulicaComputer Science ApplicationsComputational MathematicsHydraulic headRate of convergenceVariably saturated porous medium Numerical model Finite element Lumped scheme Mass conservation Unstructured mesh Analytical solutionModeling and SimulationOrdinary differential equationApplied mathematicsVariably saturated porous medium Numerical model Finite element Lumped scheme Mass conservation Unstructured mesh Analytical solutionConservation of massMathematicsJournal of Computational Physics
researchProduct

Approximation properties of q-Kantorovich-Stancu operator

2015

In this paper we study some properties of Kantorovich-type generalizations of the q-Stancu operators. We obtain some approximation properties for these operators, estimating the rate of convergence by using the first and second modulus of continuity. Also, we investigate the statistical approximation properties of the q-Kantorovich-Stancu operators using the Korovkin-type statistical approximation theorem.

Operator (computer programming)Rate of convergenceStatistical approximationApplied MathematicsMathematical analysisDiscrete Mathematics and CombinatoricsSpouge's approximationSpectral theoremOperator theoryOperator normAnalysisModulus of continuityMathematicsJournal of Inequalities and Applications
researchProduct

Helmholtz equation in unbounded domains: some convergence results for a constrained optimization problem

2016

We consider a constrained optimization problem arising from the study of the Helmholtz equation in unbounded domains. The optimization problem provides an approximation of the solution in a bounded computational domain. In this paper we prove some estimates on the rate of convergence to the exact solution.

Optimization problemHelmholtz equationDomain (software engineering)Constrained optimization problemExact solutions in general relativityMathematics - Analysis of PDEsRate of convergenceBounded functionConvergence (routing)FOS: MathematicsHelmholtz equation Transparent boundary conditions Minimization of integral functionals.Applied mathematicsMathematicsAnalysis of PDEs (math.AP)
researchProduct

On the equivalence between the Scheduled Relaxation Jacobi method and Richardson's non-stationary method

2017

The Scheduled Relaxation Jacobi (SRJ) method is an extension of the classical Jacobi iterative method to solve linear systems of equations ($Au=b$) associated with elliptic problems. It inherits its robustness and accelerates its convergence rate computing a set of $P$ relaxation factors that result from a minimization problem. In a typical SRJ scheme, the former set of factors is employed in cycles of $M$ consecutive iterations until a prescribed tolerance is reached. We present the analytic form for the optimal set of relaxation factors for the case in which all of them are different, and find that the resulting algorithm is equivalent to a non-stationary generalized Richardson's method. …

Physics and Astronomy (miscellaneous)DiscretizationFOS: Physical sciencesJacobi method010103 numerical & computational mathematics01 natural sciencesMatemàtica aplicadasymbols.namesakeMatrix (mathematics)FOS: MathematicsMathematics - Numerical Analysis0101 mathematicsEigenvalues and eigenvectorsMathematicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Numerical AnalysisApplied MathematicsLinear systemMathematical analysisNumerical Analysis (math.NA)Computational Physics (physics.comp-ph)Computer Science Applications010101 applied mathematicsComputational MathematicsElliptic operatorRate of convergenceModeling and SimulationsymbolsÀlgebra linealAstrophysics - High Energy Astrophysical PhenomenaPhysics - Computational PhysicsLaplace operatorJournal of Computational Physics
researchProduct

Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. I. Triples expansions

2016

The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T-n) triples series [J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test set of 18 modest-sized open-shell species …

PhysicsChemical Physics (physics.chem-ph)010304 chemical physicsSeries (mathematics)General Physics and AstronomyFOS: Physical sciences010402 general chemistry01 natural sciences0104 chemical sciencesCoupled clusterRate of convergenceConsistency (statistics)Quantum mechanicsTest setPhysics - Chemical Physics0103 physical sciencesPhysics::Atomic and Molecular ClustersPerturbation theory (quantum mechanics)Physical and Theoretical ChemistryPhysics::Chemical PhysicsOpen shell
researchProduct