Search results for "reactive oxygen specie"

showing 10 items of 880 documents

The mitochondrial antioxidant SS-31 increases SIRT1 levels and ameliorates inflammation, oxidative stress and leukocyte-endothelium interactions in t…

2018

AbstractThere is growing focus on mitochondrial impairment and cardiovascular diseases (CVD) in type 2 diabetes (T2D), and the development of novel therapeutic strategies in this context. It is unknown whether mitochondrial-targeting antioxidants such as SS-31 protect sufficiently against oxidative damage in diabetes. We aimed to evaluate if SS-31 modulates SIRT1 levels and ameliorates leukocyte-endothelium interactions, oxidative stress and inflammation in T2D patients. Anthropometric and metabolic parameters were studied in 51 T2D patients and 57 controls. Production of mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential, glutathione content, leukocyte-endotheliu…

0301 basic medicineMitochondrial ROSMaleAntioxidantendocrine system diseasesmedicine.medical_treatmentMitochondrionPharmacologymedicine.disease_causeAntioxidantsLeukocyte-endothelial Interactionschemistry.chemical_compoundSirtuin 1Leukocyteschemistry.chemical_classificationMembrane Potential MitochondrialMultidisciplinaryQRMiddle AgedMitochondriaUp-RegulationMedicineFemalemedicine.symptomOligopeptidesRolling FluxScienceInflammationContext (language use)SIRT1 LevelsArticle03 medical and health sciencesmedicineCell AdhesionHuman Umbilical Vein Endothelial CellsHumansAgedInflammationReactive oxygen speciesTranscription Factor RelAGlutathioneSirtuins (SIRT1)Oxidative Stress030104 developmental biologychemistryDiabetes Mellitus Type 2Case-Control StudiesReactive Oxygen SpeciesLeukocyte Rolling VelocityOxidative stressScientific Reports
researchProduct

The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated fr…

2016

It is not known if the mitochondria-targeted antioxidants such as mitoquinone (MitoQ) can modulate oxidative stress and leukocyte-endothelium interactions in T2D patients. We aimed to evaluate the beneficial effect of MitoQ on oxidative stress parameters and leukocyte-endothelium interactions in leukocytes of T2D patients. The study population consisted of 98 T2D patients and 71 control subjects. We assessed metabolic and anthropometric parameters, mitochondrial reactive oxygen species (ROS) production, glutathione peroxidase 1 (GPX-1), NFκB-p65, TNFα and leukocyte-endothelium interactions. Diabetic patients exhibited higher weight, BMI, waist circumference, SBP, DBP, glucose, insulin, HOMA…

0301 basic medicineMitochondrial ROSMaleGPX1Antioxidantendocrine system diseasesUbiquinonemedicine.medical_treatmentBMI body mass indexClinical BiochemistryLDL low density lipoprotein cholesterolAnti-Inflammatory AgentsTPP triphenylphosphonium030204 cardiovascular system & hematologyPharmacologymedicine.disease_causeBiochemistryMitoQAntioxidantschemistry.chemical_compound0302 clinical medicineGlutathione Peroxidase GPX1IR insulin resistanceLeukocyteslcsh:QH301-705.5chemistry.chemical_classificationlcsh:R5-920AnthropometryChemistryGlutathione peroxidaseType 2 diabetesMiddle AgedFemalemedicine.symptomlcsh:Medicine (General)Research PaperPMN polymorphonuclear leukocyteshs-CRP high-sensitive C-reactive proteinHOMA-IR homeostasis model assessment of insulin resistanceInflammationT2D type 2 diabetes03 medical and health sciencesOrganophosphorus CompoundsmedicineDBP diastolic blood pressure HbA1c glycated hemoglobinHUVEC human umbilical vein endothelial cellsHumansEndotheliumAgedInflammationReactive oxygen speciesMitoQGlutathione PeroxidaseTumor Necrosis Factor-alphaSBP systolic blood pressureOrganic ChemistryTranscription Factor RelAnutritional and metabolic diseasesHDL high density lipoprotein cholesterolOxidative Stress030104 developmental biologylcsh:Biology (General)Diabetes Mellitus Type 2ImmunologyReactive Oxygen SpeciesOxidative stressRedox Biology
researchProduct

Does Metformin Protect Diabetic Patients from Oxidative Stress and Leukocyte-Endothelium Interactions?

2017

Since metformin can exert beneficial vascular effects, we aimed at studying its effect on reactive oxygen species (ROS) production, antioxidant enzyme expression, levels of adhesion molecules, and leukocyte-endothelium interactions in the leukocytes from type 2 diabetic (T2D) patients. The study was carried out in 72 T2D patients (41 of whom were treated with metformin for at least 12 months at a dose of 1700 mg per day), and in 40 sex- and age-matched control subjects. Leukocytes from T2D patients exhibited enhanced levels of mitochondrial ROS and decreased mRNA levels of glutathione peroxidase 1 (gpx1) and sirtuin 3 (sirt3) with respect to controls, whereas metformin was shown to revert t…

0301 basic medicineMitochondrial ROSMaleGPX1endocrine system diseasesPhysiologyClinical Biochemistry030204 cardiovascular system & hematologymedicine.disease_causeBiochemistry0302 clinical medicineSuperoxide Dismutase-1Glutathione Peroxidase GPX1Sirtuin 3LeukocytesGeneral Environmental Sciencechemistry.chemical_classificationbiologyMiddle AgedCatalaseIntercellular Adhesion Molecule-1MetforminMetforminP-SelectinCatalaseFemalemedicine.drugmedicine.medical_specialtySIRT3Superoxide dismutase03 medical and health sciencesInternal medicinemedicineCell AdhesionHumansHypoglycemic AgentsMolecular BiologyAgedReactive oxygen speciesGlutathione Peroxidasenutritional and metabolic diseasesEndothelial CellsCell BiologyOxidative Stress030104 developmental biologyEndocrinologychemistryDiabetes Mellitus Type 2biology.proteinGeneral Earth and Planetary SciencesReactive Oxygen SpeciesOxidative stressAntioxidantsredox signaling
researchProduct

Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase

2016

Cardiovascular diseases and oxidative stress are related to polycystic ovary syndrome (PCOS) and insulin resistance (IR). We have evaluated the relationship between myeloperoxidase (MPO) and leukocyte activation in PCOS patients according to homeostatic model assessment of IR (HOMA-IR), and have explored a possible correlation between these factors and endocrine and inflammatory parameters. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 101 PCOS subjects and 105 control subjects. We divided PCOS subjects into PCOS non-IR (HOMA-IR2.5). Metabolic and anthropometric parameters, total and mitochondrial reactive oxygen species (…

0301 basic medicineMitochondrial ROSendocrine system diseasesmedicine.medical_treatment030204 cardiovascular system & hematologyPathology and Laboratory Medicinemedicine.disease_causeBiochemistryWhite Blood CellsFluorescence MicroscopyEndocrinology0302 clinical medicineAnimal CellsMedicine and Health SciencesLeukocytesInsulinImmune ResponseEnergy-Producing OrganellesMicroscopyMultidisciplinaryQRLight MicroscopyPolycystic ovaryMitochondriaOncologyMyeloperoxidaseHomeostatic model assessmentCytokinesMedicineFemaleCellular TypesCellular Structures and OrganellesInflammation MediatorsResearch ArticlePolycystic Ovary SyndromeAdultmedicine.medical_specialtyAdhesion MoleculesImmune CellsScienceImmunologyBioenergeticsBiologyResearch and Analysis MethodsProinflammatory cytokineYoung Adult03 medical and health sciencesSigns and SymptomsInsulin resistanceDiagnostic MedicineInternal medicineCell AdhesionmedicineHumansPeroxidaseInflammationDiabetic EndocrinologyBlood CellsInsulinBiology and Life SciencesCancers and Neoplasmsnutritional and metabolic diseasesCell BiologyMolecular Developmentmedicine.diseaseHormonesOxidative Stress030104 developmental biologyEndocrinologybiology.proteinInsulin ResistanceReactive Oxygen SpeciesGynecological TumorsOxidative stressDevelopmental Biology
researchProduct

Ursolic acid enhances stress resistance, reduces ROS accumulation and prolongs life span in C. elegans serotonin-deficient mutants.

2021

Introduction: Depression and anxiety disorders contribute to the global disease burden. Ursolic acid (UA), a natural compound present in many vegetables, fruits and medicinal plants, was tested in vivo for its effect on (1) enhancing resistance to stress and (2) its effect on life span. Methods: The compound was tested for its antioxidant activity in C. elegans. Stress resistance was tested in the heat and osmotic stress assay. Additionally, the influence on normal life span was examined. RT-PCR was used to assess possible serotonin targets. Results: UA prolonged the life span of C. elegans. Additionally, UA significantly lowered reactive oxygen species (ROS). Molecular docking studies, PCR…

0301 basic medicineModels MolecularSerotoninAntioxidantHot TemperatureOsmotic shockmedicine.medical_treatmentLongevityPharmacologyAntioxidants03 medical and health scienceschemistry.chemical_compound0302 clinical medicineUrsolic acidIn vivoOsmotic PressureStress PhysiologicalmedicineAnimalsReceptorCaenorhabditis elegans5-HT receptorchemistry.chemical_classificationReactive oxygen speciesDepressionGeneral MedicineTriterpenesMolecular Docking SimulationDisease Models Animal030104 developmental biologychemistryReceptors SerotoninMutationSerotoninReactive Oxygen Species030217 neurology & neurosurgeryFood ScienceNaphthoquinonesFoodfunction
researchProduct

Specific role of N-methyl-D-aspartate (NMDA) receptor in elastin-derived VGVAPG peptide-dependent calcium homeostasis in mouse cortical astrocytes in…

2019

AbstractUnder physiological and pathological conditions, elastin is degraded to produce elastin-derived peptides (EDPs). EDPs are detected in the healthy human brain, and its concentration significantly increases after ischemic stroke. Both elastin and EDPs contains replications of the soluble VGVAPG hexapeptide, which has a broad range of biological activities. Effects of VGVAPG action are mainly mediated by elastin-binding protein (EBP), which is alternatively spliced, enzymatically inactive form of the GLB1 gene. This study was conducted to elucidate the activation and role of the N-methyl-D-aspartate receptor (NMDAR) in elastin-derived VGVAPG peptide-dependent calcium homeostasis in mou…

0301 basic medicineMolecular biologylcsh:MedicinePathogenesisBiochemistryReceptors N-Methyl-D-AspartateArticleMice03 medical and health sciencesMedical research0302 clinical medicineAnimalsHomeostasisGene silencingGene SilencingRNA MessengerRNA Small InterferingReceptorlcsh:ScienceCells CulturedCerebral CortexGene knockdownMultidisciplinaryMolecular medicinebiologyChemistrylcsh:RIn vitroElastinCell biology030104 developmental biologyAstrocytesbiology.proteinNMDA receptorCalciumlcsh:QSignal transductionReactive Oxygen SpeciesOligopeptidesElastinBiomarkers030217 neurology & neurosurgeryProto-oncogene tyrosine-protein kinase SrcScientific Reports
researchProduct

Sng1 associates with Nce102 to regulate the yeast Pkh–Ypk signalling module in response to sphingolipid status

2016

International audience; All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery. Nevertheless, the mechanisms and the act…

0301 basic medicineMyriocinOrm2Saccharomyces-cerevisiaeMembrane propertiesFatty Acids MonounsaturatedGlycogen Synthase Kinase 3Bacteriocins[SDV.IDA]Life Sciences [q-bio]/Food engineeringHomeostasisPhosphorylationMicroscopy ConfocalbiologyEffectorPlasma-membraneActin cytoskeleton[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringPhospholipid translocationTransmembrane proteinCell biologyCold TemperatureBiochemistryP-type atpasesSignal transductionCold stressCell-wall integrityProtein BindingSignal TransductionProteins slm1Saccharomyces cerevisiae ProteinsPhospholipid translocationHigh-pressureSaccharomyces cerevisiaeImmunoblottingFluorescence PolarizationSaccharomyces cerevisiaeSignallingModels Biological3-Phosphoinositide-Dependent Protein Kinases03 medical and health sciencesBudding yeastMolecular BiologySphingolipids030102 biochemistry & molecular biologyTryptophan permeasePhospholipid flippingMembrane ProteinsCell Biologybiology.organism_classificationActin cytoskeletonSphingolipidYeast030104 developmental biologyMembrane proteinMutationPeptidesReactive Oxygen Species
researchProduct

Cytotoxicity of 18 Cameroonian medicinal plants against drug sensitive and multi-factorial drug resistant cancer cells

2018

Abstract Ethnopharmacological relevance Cameroonian medicinal plants are traditionally used to treat many ailments, including cancer and related diseases. Cancer is characterized as a condition with complex signs and symptoms. It has been recommended that ethnopharmacological usages such as immune and skin disorders, inflammatory, infectious, parasitic and viral diseases should be taken into account when selecting plants for anticancer screenings, since these reflect disease states bearing relevance to cancer or cancer-like symptoms. Aim of the study The present study aims at investigating 20 methanol extracts from 15 Cameroonian medicinal plants on a panel of human cancer cell lines, inclu…

0301 basic medicineNaucleaCell SurvivalAntineoplastic AgentsApoptosisMagnoliopsida03 medical and health sciencesPhytomedicine0302 clinical medicineMorus mesozygiaCell Line TumorDrug DiscoverymedicineHumansCameroonMedicinal plantsErythrinaMembrane Potential MitochondrialPharmacologyPlants MedicinalbiologyTraditional medicinePlant ExtractsCancerbiology.organism_classificationmedicine.diseaseDrug Resistance Multiple030104 developmental biologyDrug Resistance NeoplasmCaspases030220 oncology & carcinogenesisvisual_artCancer cellvisual_art.visual_art_mediumBarkReactive Oxygen SpeciesJournal of Ethnopharmacology
researchProduct

Role of oxidative stress in neonatal respiratory distress syndrome

2019

Respiratory distress syndrome is the commonest respiratory disorder in preterm infants. Although it is well known that preterm birth has a key role, the mechanisms of lung injury have not been fully elucidated. The pathogenesis of this neonatal condition is based on the rapid formation of the oxygen reactive species, which surpasses the detoxification capacity of anti-oxidative defense system. The high reactivity of free radical leads to damage to a variety of molecules and may induce respiratory cell death. There is evidence that the oxidative stress involved in the physiopathology of this disease, is particularly related to oxygen supplementation, mechanical ventilation, inflammation/infe…

0301 basic medicineNeonatal respiratory distress syndromeRespiratory distress syndromemedicine.medical_treatmentDiseaseLung injurymedicine.disease_causeBiochemistry03 medical and health sciencesSurface-Active Agents0302 clinical medicineFetusPregnancyPhysiology (medical)MedicineHumansRespiratory systemMechanical ventilationRespiratory Distress Syndrome NewbornRespiratory distressContinuous Positive Airway Pressurebusiness.industryInfant NewbornLung InjuryNewbornmedicine.diseaseNewborn; Oxidative stress; Prematurity; Respiratory distress syndrome; VentilationRespiration ArtificialVentilationOxygenDiabetes GestationalOxidative Stress030104 developmental biologyImmunologyBreathingOxidative streFemalePrematuritybusinessReactive Oxygen Species030217 neurology & neurosurgeryOxidative stressInfant Premature
researchProduct

The Action of Di-(2-Ethylhexyl) Phthalate (DEHP) in Mouse Cerebral Cells Involves an Impairment in Aryl Hydrocarbon Receptor (AhR) Signaling

2018

Di-(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer in various plastic compounds, such as polyvinyl chloride (PVC), and products including baby toys, packaging films and sheets, medical tubing, and blood storage bags. Epidemiological data suggest that phthalates increase the risk of the nervous system disorders; however, the impact of DEHP on the brain cells and the mechanisms of its action have not been clarified. The aim of the present study was to investigate the effects of DEHP on production of reactive oxygen species (ROS) and aryl hydrocarbon receptor (AhR), as well as Cyp1a1 and Cyp1b1 mRNA and protein expression in primary mouse cortical neurons and glial cells in the in vit…

0301 basic medicineNervous systemendocrine systemCYP1B1Gene ExpressionNeocortexToxicologyMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDiethylhexyl PhthalateGliaCytochrome P-450 CYP1A1medicineAnimalsCyp1a1RNA MessengerCells Culturedchemistry.chemical_classificationNeuronsReactive oxygen speciesMessenger RNADose-Response Relationship DrugbiologyDEHPChemistryGeneral NeuroscienceAhRPhthalateROSrespiratory systemAryl hydrocarbon receptorIn vitroCell biology030104 developmental biologymedicine.anatomical_structureReceptors Aryl HydrocarbonCytochrome P-450 CYP1B1biology.proteinOriginal ArticleSignal transductionReactive Oxygen SpeciesNeuroglia030217 neurology & neurosurgerySignal TransductionNeurotoxicity Research
researchProduct