Search results for "refolding"
showing 5 items of 5 documents
C-terminal amino acids are essential for human heat shock protein 70 dimerization
2014
The human inducible heat shock protein 70 (hHsp70), which is involved in several major pathologies, including neurodegenerative disorders and cancer, is a key molecular chaperone and contributes to the proper protein folding and maintenance of a large number of protein structures. Despite its role in disease, the current structural knowledge of hHsp70 is almost exclusively based on its Escherichia coli homolog, DnaK, even though these two proteins only share ~50 % amino acid identity. For the first time, we describe a complete heterologous production and purification strategy that allowed us to obtain a large amount of soluble, full-length, and non-tagged hHsp70. The protein displayed both …
Identification of disulphide bonds in the refolding of bovine pancreatic RNase A
1996
Background: Comprehension of the rules that govern the folding process is still far from satisfactory, though it is nevertheless clear that all the information required to define the folding is encoded in the amino acid sequence. In proteins that contain disulphide bonds, folding is associated with disulphide bond formation. Protein species with different numbers of disulphides tend to accumulate during the process; these species can be trapped in a stable form, by quenching any remaining free SH groups, and then characterized in order to identify the disulphide bonds formed. Results The refolding pathway of reduced and denatured RNase A has been studied using mass spectrometric strategies …
HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia
2014
International audience; β-Thalassaemia major (β-TM) is an inherited haemoglobinopathy caused by a quantitative defect in the synthesis of β-globin chains of haemoglobin, leading to the accumulation of free α-globin chains that form toxic aggregates. Despite extensive knowledge of the molecular defects causing β-TM, little is known of the mechanisms responsible for the ineffective erythropoiesis observed in the condition, which is characterized by accelerated erythroid differentiation, maturation arrest and apoptosis at the polychromatophilic stage. We have previously demonstrated that normal human erythroid maturation requires a transient activation of caspase-3 at the later stages of matur…
Self-healing silk from the sea: role of helical hierarchical structure inPinna nobilisbyssus mechanics
2019
11 pages; International audience; The byssus fibers of Mytilus mussel species have become an important role model in bioinspired materials research due to their impressive properties (e.g. high toughness, self-healing); however, Mytilids represent only a small subset of all byssus-producing bivalves. Recent studies have revealed that byssus from other species possess completely different protein composition and hierarchical structure. In this regard, Pinna nobilis byssus is especially interesting due to its very different morphology, function and its historical use for weaving lightweight golden fabrics, known as sea silk. P. nobilis byssus was recently discovered to be comprised of globula…
Recombinant expression, in vitro refolding, and biophysical characterization of the N-terminal domain of T1R3 taste receptor
2012
Facteur d'impact (5 ans) : 1,617Notoriété à 2 ans : Acceptable (biochem.res.methods); The sweet taste receptor is a heterodimeric receptor composed of the T1R2 and T1R3 subunits, while T1R1 and T1R3 assemble to form the umami taste receptor. T1R receptors belong to the family of class C G-protein coupled receptors (GPCRs). In addition to a transmembrane heptahelical domain, class C GPCRs have a large extracellular N-terminal domain (NTD), which is the primary ligand-binding site. The T1R2 and T1R1 subunits have been shown to be responsible for ligand binding, via their NTDs. However, little is known about the contribution of T1R3-NTD to receptor functions. To enable biophysical characteriza…