Search results for "refrigerator"

showing 8 items of 18 documents

Sub-kelvin current amplifier using DC-SQUID

2000

Abstract We have set up a system where a low-noise DC-SQUID is used as a current amplifier. The SQUID output is read using a wide band electronics unit based on the noise cancellation scheme. The SQUID has been installed in a compact Nanoway PDR50 dilution refrigerator, and superconducting transitions of Ti/Au thermometer strips for X-ray calorimeter applications have been measured. We can operate at 100 mK using a SQUID with Pd shunt resistors. Noise and bandwidth results of the setup are presented.

PhysicsSuperconductivityCurrent-feedback operational amplifierbusiness.industryPhysics::Instrumentation and DetectorsAmplifierPhysics::Medical PhysicsSTRIPSCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionNuclear magnetic resonancelawThermometerCondensed Matter::SuperconductivityOptoelectronicsElectronicsDilution refrigeratorElectrical and Electronic EngineeringbusinessActive noise controlPhysica B: Condensed Matter
researchProduct

A single stage adiabatic demagnetization refrigerator for testing x-ray microcalorimeters

2004

A single stage Adiabatic Demagnetization Refrigerator (ADR), has been set-up at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF - Osservatorio Astronomico di Palermo G.S. Vaiana, for the development and testing of cryogenic X-ray detectors for laboratory and astrophysical applications. The ADR allows to cool detectors at temperatures below 40 mK and to maintain them at constant operating temperature for many hours. We describe the design and construction of the ADR and present test results and performances.

PhysicsX-ray astronomyPhysics::Instrumentation and DetectorsInstrumentationNuclear engineeringX-Ray Astronomy Instrumentation Cryogenics MicrocalorimetersAstrophysics::Instrumentation and Methods for AstrophysicsRefrigerator carX-ray detectorCryogenicsAstrophysicsOperating temperatureComputer Science::Computational Engineering Finance and ScienceCalibrationAdiabatic processHigh-Energy Detectors in Astronomy
researchProduct

Phonon Cooling of Nanomechanical Beams with Tunnel Junctions

2009

We demonstrate electronic cooling of 1D phonon modes in suspended nanowires for the first time, using normal-metal-insulator-superconductor (N-I-S) tunnel junctions. Simultaneous cooling of both electrons and phonons to a common temperature was achieved. In comparison with nonsuspended devices, better cooling performance is achieved in the whole operating range of bath temperatures between 0.1-0.7 K. The observed low-temperature thermal transport characteristics are consistent with scattering of ballistic phonons at the nanowire-bulk contact as being the mechanism limiting thermal transport. At the lowest bath temperature of the experiment approximately 100 mK, both phonons and electrons in…

Range (particle radiation)Materials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsScatteringPhononCondensed Matter - SuperconductivityRefrigerator carNanowireFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter::Materials ScienceThermal transportCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physics0210 nano-technologyBeam (structure)Physical Review Letters
researchProduct

Efficient Peltier refrigeration by a pair of normal metal/ insulator/superconductor junctions

1995

We suggest and demonstrate in experiment that two normal metal /insulator/ superconductor (NIS) tunnel junctions combined in series to form a symmetric SINIS structure can operate as an efficient Peltier refrigerator. Specifically, it is shown that the SINIS structure with normal-state junction resistances 1.0 and 1.1 k$\Omega$ is capable of reaching a temperature of about 100 mK starting from 300 mK. We estimate the corresponding cooling power to be 1.5 pW per total junction area of 0.8 $\mu$m$^2$ at $T= 300$ mK.

SuperconductivityMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsCondensed Matter (cond-mat)Refrigerator carRefrigerationFOS: Physical sciencesInsulator (electricity)Condensed MatterJunction areaThermoelectric effectCooling powerMetal insulator
researchProduct

Direct measurements of electron thermalization in Coulomb blockade nanothermometers at millikelvin temperatures

1998

Abstract We investigate electron thermalization of tunnel junction arrays installed in a powerful dilution refrigerator whose mixing chamber can produce lattice temperatures down to 3 mK. The on-chip Coulomb blockade thermometers (CBT) against other thermometers at the mixing chamber provide direct information on the thermal equilibrium between the electronic system and the refrigerator. We can detect and discriminate between the heat load delivered through the wiring and that produced by the bias current of the CBT-measurement. The basic heat leak limits the minimum of the electronic temperature to slightly below 20 mK.

Thermal equilibriumMaterials scienceThermalisationCondensed matter physicsTunnel junctionRefrigerator carCoulomb blockadeBiasingDilution refrigeratorElectronCondensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPhysica E: Low-dimensional Systems and Nanostructures
researchProduct

Experimental characterization of a novel configuration of thermoelectric refrigerator with integrated finned heat pipes

2021

Abstract Thermoelectric refrigerating systems (TER) are environment-friendly technologies. They have several advantages such as low maintenance costs, are less cumbersome and long lifetime. However, these systems have low coefficient of performance and are limited in achieving low temperature levels. This study investigates a new configuration of TE refrigerator employing a novel arrangement of heat sinks with integrated flat and finned heat pipes. A mathematical model is firstly developed to predict transient temperatures and cooling limit time. An experimental characterization is then performed and it includes optimization of energy consumption, cooling time, temperature levels and TE ref…

Work (thermodynamics)Materials scienceThermoelectric coolingMechanical EngineeringNuclear engineering0211 other engineering and technologiesRefrigerator car02 engineering and technologyBuilding and ConstructionCoefficient of performanceHeat sink021001 nanoscience & nanotechnologyHeat pipeThermoelectric effect021108 energyTransient (oscillation)0210 nano-technologyInternational Journal of Refrigeration
researchProduct

High-frequency filtering for low-temperature thermal transport studies in nanostructures

2012

Filtering of external unwanted RF-noise and thermal noise generated at the high-temperature parts of the measuring circuit is essential for successful measurements of thermal transport of nanostructures at low temperatures. This is because of thermal decoupling of the systems, i.e. the extreme weakness of thermal conduction at sub-Kelvin temperatures, leading easily to overheating even with excess power in sub pW range. We have started to improve the noise filtering in our cryogenic dilution refrigerators, which can reach a base temperature of ~ 50 mK. The miniature low-pass filters were made from special RF sealing compound Eccosorb CR124, stainless steel powder of grain size 50 micrometer…

high frequency filteringnanorakenteetdilution refrigeratorpowder filterSINISfysiikkaeccosorbmicrofabrication
researchProduct

Superconducting tunnel junction fabrication on three-dimensional topography based on direct laser writing

2020

Superconducting junctions are widely used in a multitude of applications ranging from quantum information science and sensing to solidstate cooling. Traditionally, such devices must be fabricated on flat substrates using standard lithographic techniques. In this study, we demonstrate a highly versatile method that allows for superconducting junctions to be fabricated on a more complex topography. It is based on maskless direct laser writing and two-photon lithography, which allows writing in 3D space. We show that high-quality normal metal–insulator–superconductor tunnel junctions can be fabricated on top of a 20-lm-tall three-dimensional topography. Combined with conformal resist coating m…

quantum informationspin coatingcryogenicsnanoelektroniikkaphononic crystalsuperconductor-insulator-superconductor tunnel junctionnanotekniikkatemperature metrologymultiphoton lithographyrefrigeratorselectron tunnelingsuprajohteet
researchProduct