Search results for "renormalization group"
showing 10 items of 206 documents
Products of current operators in the exact renormalization group formalism
2020
Given a Wilson action invariant under global chiral transformations, we can construct current composite operators in terms of the Wilson action. The short distance singularities in the multiple products of the current operators are taken care of by the exact renormalization group. The Ward-Takahashi identity is compatible with the finite momentum cutoff of the Wilson action. The exact renormalization group and the Ward-Takahashi identity together determine the products. As a concrete example, we study the Gaussian fixed-point Wilson action of the chiral fermions to construct the products of current operators.
Bimetric Renormalization Group Flows in Quantum Einstein Gravity
2011
The formulation of an exact functional renormalization group equation for Quantum Einstein Gravity necessitates that the underlying effective average action depends on two metrics, a dynamical metric giving the vacuum expectation value of the quantum field, and a background metric supplying the coarse graining scale. The central requirement of "background independence" is met by leaving the background metric completely arbitrary. This bimetric structure entails that the effective average action may contain three classes of interactions: those built from the dynamical metric only, terms which are purely background, and those involving a mixture of both metrics. This work initiates the first …
Cosmological Perturbations in Renormalization Group Derived Cosmologies
2002
A linear cosmological perturbation theory of an almost homogeneous and isotropic perfect fluid Universe with dynamically evolving Newton constant $G$ and cosmological constant $\Lambda$ is presented. A gauge-invariant formalism is developed by means of the covariant approach, and the acoustic propagation equations governing the evolution of the comoving fractional spatial gradients of the matter density, $G$, and $\Lambda$ are thus obtained. Explicit solutions are discussed in cosmologies where both $G$ and $\Lambda$ vary according to renormalization group equations in the vicinity of a fixed point.
Finite Entanglement Entropy in Asymptotically Safe Quantum Gravity
2018
Entanglement entropies calculated in the framework of quantum field theory on classical, flat or curved, spacetimes are known to show an intriguing area law in four dimensions, but they are also notorious for their quadratic ultraviolet divergences. In this paper we demonstrate that the analogous entanglement entropies when computed within the Asymptotic Safety approach to background independent quantum gravity are perfectly free from such divergences. We argue that the divergences are an artifact due to the over-idealization of a rigid, classical spacetime geometry which is insensitive to the quantum dynamics.
Bare Action and Regularized Functional Integral of Asymptotically Safe Quantum Gravity
2009
Investigations of Quantum Einstein Gravity (QEG) based upon the effective average action employ a flow equation which does not contain any ultraviolet (UV) regulator. Its renormalization group trajectories emanating from a non-Gaussian fixed point define asymptotically safe quantum field theories. A priori these theories are, somewhat unusually, given in terms of their effective rather than bare action. In this paper we construct a functional integral representation of these theories. We fix a regularized measure and show that every trajectory of effective average actions, depending on an IR cutoff only, induces an associated trajectory of bare actions which depend on a UV cutoff. Together …
Functional and local renormalization groups
2015
We discuss the relation between functional renormalization group (FRG) and local renormalization group (LRG), focussing on the two dimensional case as an example. We show that away from criticality the Wess-Zumino action is described by a derivative expansion with coefficients naturally related to RG quantities. We then demonstrate that the Weyl consistency conditions derived in the LRG approach are equivalent to the RG equation for the $c$-function available in the FRG scheme. This allows us to give an explicit FRG representation of the Zamolodchikov-Osborn metric, which in principle can be used for computations.
Ultraviolet Fixed Point and Generalized Flow Equation of Quantum Gravity
2001
A new exact renormalization group equation for the effective average action of Euclidean quantum gravity is constructed. It is formulated in terms of the component fields appearing in the transverse-traceless decomposition of the metric. It facilitates both the construction of an appropriate infrared cutoff and the projection of the renormalization group flow onto a large class of truncated parameter spaces. The Einstein-Hilbert truncation is investigated in detail and the fixed point structure of the resulting flow is analyzed. Both a Gaussian and a non-Gaussian fixed point are found. If the non-Gaussian fixed point is present in the exact theory, quantum Einstein gravity is likely to be r…
Fermion masses and the UV cutoff of the minimal realistic SU(5)
2006
We investigate the predictions for fermion masses in the minimal realistic non-supersymmetric SU(5) model with the Standard Model matter content. The possibility to achieve b-\tau unification is studied taking into account all relevant effects. In addition, we show how to establish an upper bound on the ultraviolet cutoff \Lambda of the theory which is compatible with the Yukawa couplings at the grand unified scale and proton decay. We find \Lambda \simeq 10^{17} GeV, to be considered a conservative upper bound on the cutoff. We also provide up-to-date values of all the fermions masses at the electroweak scale.
Matter Induced Bimetric Actions for Gravity
2011
The gravitational effective average action is studied in a bimetric truncation with a nontrivial background field dependence, and its renormalization group flow due to a scalar multiplet coupled to gravity is derived. Neglecting the metric contributions to the corresponding beta functions, the analysis of its fixed points reveals that, even on the new enlarged theory space which includes bimetric action functionals, the theory is asymptotically safe in the large $N$ expansion.
En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions
2014
The most momentous requirement a quantum theory of gravity must satisfy is Background Independence, necessitating in particular an ab initio derivation of the arena all non-gravitational physics takes place in, namely spacetime. Using the background field technique, this requirement translates into the condition of an unbroken split-symmetry connecting the (quantized) metric fluctuations to the (classical) background metric. If the regularization scheme used violates split-symmetry during the quantization process it is mandatory to restore it in the end at the level of observable physics. In this paper we present a detailed investigation of split-symmetry breaking and restoration within the…