Search results for "renormalization group"
showing 10 items of 206 documents
Renormalization group analysis of thermal transport in the disordered Fermi liquid
2014
We present a detailed study of thermal transport in the disordered Fermi liquid with short-range interactions. At temperatures smaller than the impurity scattering rate, i.e., in the diffusive regime, thermal conductivity acquires non-analytic quantum corrections. When these quantum corrections become large at low temperatures, the calculation of thermal conductivity demands a theoretical approach that treats disorder and interactions on an equal footing. In this paper, we develop such an approach by merging Luttinger's idea of using gravitational potentials for the analysis of thermal phenomena with a renormalization group calculation based on the Keldysh nonlinear sigma model. The gravita…
Dynamical Density-Matrix Renormalization Group for the Mott--Hubbard insulator in high dimensions
2004
We study the Hubbard model at half band-filling on a Bethe lattice with infinite coordination number in the paramagnetic insulating phase at zero temperature. We use the dynamical mean-field theory (DMFT) mapping to a single-impurity Anderson model with a bath whose properties have to be determined self-consistently. For a controlled and systematic implementation of the self-consistency scheme we use the fixed-energy (FE) approach to the DMFT. In FE-DMFT the onset and the width of the Hubbard bands are adjusted self-consistently but the energies of the bath levels are kept fixed relatively to both band edges during the calculation of self-consistent hybridization strengths between impurity …
Fourth-order perturbation theory for the half-filled Hubbard model in infinite dimensions
2003
We calculate the zero-temperature self-energy to fourth-order perturbation theory in the Hubbard interaction $U$ for the half-filled Hubbard model in infinite dimensions. For the Bethe lattice with bare bandwidth $W$, we compare our perturbative results for the self-energy, the single-particle density of states, and the momentum distribution to those from approximate analytical and numerical studies of the model. Results for the density of states from perturbation theory at $U/W=0.4$ agree very well with those from the Dynamical Mean-Field Theory treated with the Fixed-Energy Exact Diagonalization and with the Dynamical Density-Matrix Renormalization Group. In contrast, our results reveal t…
XXZ-like phase in the F-AF anisotropic Heisenberg chain
2008
By means of the Density Matrix Renormalization Group technique, we have studied the region where $XXZ$-like behavior is most likely to emerge within the phase diagram of the F-AF anisotropic extended ($J-J'$) Heisenberg chain. We have analyzed, in great detail, the equal-time two-spin correlation functions, both in- and out-of- plane, as functions of the distance (and momentum). Then, we have extracted, through an accurate fitting procedure, the exponents of the asymptotic power-law decay of the spatial correlations. We have used the exact solution of $XXZ$ model ($J'=0$) to benchmark our results, which clearly show the expected agreement. A critical value of $J'$ has been found where the r…
Vortex-glass transition in three dimensions.
1991
We investigate the possibility of a vortex-glass transition in a disordered type-II superconductor in a magnetic field in three dimensions by numerical studies of a simplified model. Monte Carlo simulations at finite temperature and domain-wall renormalization-group calculations at {ital T}=0 indicate that {ital d}=3 is just above the lower critical dimension {ital d}{sub {ital l}}, though the possibility that {ital d}{sub {ital l}}=3 cannot be definitely ruled out. A comparison is made with {ital XY} and Ising spin glasses. The (effective) correlation-length exponent {nu} and dynamical exponent {ital z} are in fairly good agreement with experiment.
Tricritical universality in a two-dimensional spin fluid
1995
Monte Carlo simulations are used to investigate the tricritical point properties of a 2d spin fluid. Measurements of the scaling operator distributions are employed in conjunction with a finite-size scaling analysis to locate the tricritical point and determine the directions of the relevant scaling fields and their associated tricritical exponents. The scaling operator distributions and exponents are shown to match quantitatively those of the 2d Blume-Capel model, confirming that both models belong to the same universality class. Mean-field calculations of the tricritical point properties are also compared with the simulation measurements.
Small-$x$ Physics in the Dipole Picture at NLO Accuracy
2018
International audience; We review recent progress in NLO calculations for dilute-dense processes in the CGC picture. In particular, we focus here on recent steps in understanding high energy renormalization group evolution (BK/JIMWLK), the total DIS cross section at small x and forward particle production in proton-nucleus collisions at next-to-leading order.
The Ground State of the 2-Dimensional Potts Glass
1992
We study the ground state of the 3-state Potts glass in 2 dimensions with a Gaussian distribution of couplings by domain wall renormalization group techniques. We find that the glass correlation function decays to a finite value within a distance of about 2.4 lattice spacings. Thus, there is long-range order in the ground state even though, as found earlier, there is a finite zero-point entropy.
Use of a running coupling in the NLO calculation of forward hadron production
2018
We address and solve a puzzle raised by a recent calculation [1] of the cross-section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an un- reasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by one to two orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artefact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to mo…
Ab initio limits of atomic nuclei
2019
We predict the limits of existence of atomic nuclei, the proton and neutron drip lines, from the light through medium-mass regions. Starting from a chiral two- and three-nucleon interaction with good saturation properties, we use the valence-space in-medium similarity renormalization group to calculate ground-state and separation energies from helium to iron, nearly 700 isotopes in total. We use the available experimental data to quantify the theoretical uncertainties for our ab initio calculations towards the drip lines. Where the drip lines are known experimentally, our predictions are consistent within the estimated uncertainty. For the neutron-rich sodium to chromium isotopes, we provid…