Search results for "renormalization group"

showing 10 items of 206 documents

JIMWLK evolution of the odderon

2016

We study the effects of a parity-odd "odderon" correlation in JIMWLK renormalization group evolution at high energy. Firstly we show that in the eikonal picture where the scattering is described by Wilson lines, one obtains a strict mathematical upper limit for the magnitude of the odderon amplitude compared to the parity even pomeron one. This limit increases with N_c, approaching infinity in the infinite N_c limit. We use a systematic extension of the Gaussian approximation including both 2- and 3-point correlations which enables us to close the system of equations even at finite N_c. In the large-N_c limit we recover an evolution equation derived earlier. By solving this equation numeric…

SMALL-X EVOLUTIONWilson loopNuclear TheoryLARGE NUCLEIWilson linesFOS: Physical sciencesField (mathematics)114 Physical sciences01 natural sciencesHIGH-ENERGY SCATTERINGColor-glass condensateRENORMALIZATION-GROUPNuclear Theory (nucl-th)GLUON DISTRIBUTION-FUNCTIONSPomeronHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanicsquantum chromodynamics0103 physical sciencesEQUATION010306 general physicsPhysicsta114evolution equations010308 nuclear & particles physicsScatteringEikonal equationHERA-DATAHigh Energy Physics::PhenomenologyCOLOR GLASS CONDENSATEodderonRenormalization groupHigh Energy Physics - PhenomenologyAmplitudeJIMWLKPA-COLLISIONSBK EVOLUTION
researchProduct

Ferroelastic transition in Kbr:Kcn studied by neutrons, x-rays and ultrasonic

1986

The ferroelastic phase transition of (KBr) 0 27 (KNC) 0.73 has been studied by X-ray diffraction, ultrasonics and inelastic neutron scattering. It is the first example of a cubic crystal where the elastic shear constant C 44 softens completely corresponding to the m = 2 universality class. C 44 and the Bragg intensities show a non-classical critical behaviour.

Shear (sheet metal)DiffractionPhase transitionMaterials scienceCondensed matter physicsAstrophysics::High Energy Astrophysical PhenomenaGeneral EngineeringNeutronCubic crystal systemRenormalization groupConstant (mathematics)Inelastic neutron scattering
researchProduct

Smooth Feshbach map and operator-theoretic renormalization group methods

2003

Abstract A new variant of the isospectral Feshbach map defined on operators in Hilbert space is presented. It is constructed with the help of a smooth partition of unity, instead of projections, and is therefore called smooth Feshbach map . It is an effective tool in spectral and singular perturbation theory. As an illustration of its power, a novel operator-theoretic renormalization group method is described and applied to analyze a general class of Hamiltonians on Fock space. The main advantage of the new renormalization group method over its predecessors is its technical simplicity, which it owes to the use of the smooth Feshbach map.

Singular perturbationClass (set theory)010102 general mathematicsMathematical analysisHilbert spaceRenormalization group01 natural sciencesFock spacesymbols.namesakeIsospectralPartition of unity0103 physical sciencessymbolsFunctional renormalization group010307 mathematical physics0101 mathematicsAnalysisMathematical physicsMathematicsJournal of Functional Analysis
researchProduct

Random walks in dynamic random environments and ancestry under local population regulation

2015

We consider random walks in dynamic random environments, with an environment generated by the time-reversal of a Markov process from the oriented percolation universality class. If the influence of the random medium on the walk is small in space-time regions where the medium is typical, we obtain a law of large numbers and an averaged central limit theorem for the walk via a regeneration construction under suitable coarse-graining. Such random walks occur naturally as spatial embeddings of ancestral lineages in spatial population models with local regulation. We verify that our assumptions hold for logistic branching random walks when the population density is sufficiently high.

Statistics and Probability82B43Markov processRandom walklogistic branching random walk01 natural sciences60K37 60J10 60K35 82B43010104 statistics & probabilitysymbols.namesakeMathematics::ProbabilityFOS: MathematicsLocal populationStatistical physics0101 mathematicsoriented percolationCentral limit theoremMathematicsdynamical random environmentProbability (math.PR)010102 general mathematicsRandom mediaRenormalization groupsupercritical clusterRandom walk60K37Population model60K35central limit theorem in random environmentPercolationsymbols60J10Statistics Probability and UncertaintyMathematics - ProbabilityElectronic Journal of Probability
researchProduct

Critical phenomena at surfaces

1990

Abstract The presence of free surfaces adds a rich and interesting complexity to critical phenomena associated with phase transitions occurring in bulk materials. We shall review Monte Carlo computer simulation studies of surface critical behavior in simple cubic Ising- and XY-models with nearest-neighbor interactions J in the bulk and Js at the surface. These studies allow the identification of various critical exponents and critical amplitude ratios involving both the critical behavior of local quantities and of surface excess corrections to the bulk. We consider both the “ordinary” transition (surface criticality controlled by the bulk) and the “special transition” (a multicritical point…

Statistics and ProbabilityPhase transitionCondensed matter physicsCritical point (thermodynamics)Critical phenomenaMulticritical pointIsing modelStatistical physicsRenormalization groupCondensed Matter PhysicsScalingCritical exponentMathematicsPhysica A: Statistical Mechanics and its Applications
researchProduct

Phase Transitions in the Multicomponent Widom-Rowlinson Model and in Hard Cubes on the BCC--Lattice

1997

We use Monte Carlo techniques and analytical methods to study the phase diagram of the M--component Widom-Rowlinson model on the bcc-lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. Simulations show that for M greater or equal 3 there is a ``crystal phase'' for z lying between z_c(M) and z_d(M) while for z > z_d(M) there are M demixed phases each consisting mostly of one species. For M=2 there is a direct second order transition from the gas phase to the demixed phase while for M greater or equal 3 the transition at z_d(M) appears to be first order putting it in the Potts model universality class. For M large, …

Statistics and ProbabilityPhysicsPhase transitionCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesRenormalization groupCondensed Matter Physicsk-nearest neighbors algorithmLattice (order)Ising modelFugacityCondensed Matter - Statistical MechanicsPhase diagramPotts model
researchProduct

Monte Carlo investigations of phase transitions: status and perspectives

2000

Using the concept of finite-size scaling, Monte Carlo calculations of various models have become a very useful tool for the study of critical phenomena, with the system linear dimension as a variable. As an example, several recent studies of Ising models are discussed, as well as the extension to models of polymer mixtures and solutions. It is shown that using appropriate cluster algorithms, even the scaling functions describing the crossover from the Ising universality class to the mean-field behavior with increasing interaction range can be described. Additionally, the issue of finite-size scaling in Ising models above the marginal dimension (d*=4) is discussed.

Statistics and ProbabilityPhysicsPhase transitionStatistical Mechanics (cond-mat.stat-mech)Critical phenomenaMonte Carlo methodCrossoverFOS: Physical sciencesRenormalization groupCondensed Matter PhysicsDimension (vector space)Ising modelStatistical physicsScalingCondensed Matter - Statistical MechanicsPhysica A: Statistical Mechanics and its Applications
researchProduct

Ordering and demixing transitions in multicomponent Widom-Rowlinson models.

1995

We use Monte Carlo techniques and analytical methods to study the phase diagram of multicomponent Widom-Rowlinson models on a square lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. Simulations show that for M between two and six there is a direct transition from the gas phase at z < z_d (M) to a demixed phase consisting mostly of one species at z > z_d (M) while for M \geq 7 there is an intermediate ``crystal phase'' for z lying between z_c(M) and z_d(M). In this phase, which is driven by entropy, particles, independent of species, preferentially occupy one of the sublattices, i.e. spatial symmetry but not …

Statistics::TheoryStatistics::ApplicationsBethe latticeCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)Coordination numberFOS: Physical sciencesRenormalization groupLambdaSquare latticeIsing modelCondensed Matter - Statistical MechanicsPotts modelMathematicsPhase diagramPhysical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
researchProduct

The Gauge Glass Transition

1993

Results of Monte Carlo simulations in three and four spatial dimensions of a simple model that seems to have the necessary ingredients for disordered type-II superconductor behavior in an external magnetic field are reported. The data suggest that in d = 3 dimensions there is a finite temperature phase transition at T ≈ 0.45 into a truly superconducting vortex glass phase with infinite d.c. conductivity The (effective) correlation length exponent v and the dynamic critical exponent z at this transition are in good agreement with experiments. In d = 4 dimensions the gauge glass transition is located at T ≈ 0.95. It is concluded that the lack of time reversal symmetry in the model places it i…

SuperconductivityPhysicsPhase transitionSpin glassCondensed matter physicsPhase (matter)ExponentRenormalization groupGlass transitionCritical exponent
researchProduct

Continuous Phase Transitions at Surfaces of CuAu Alloy Models — A Monte Carlo Study of Surface Induced Order and Disorder

1996

The influence of surface on phase transitions has found significant attention in recent years, and a number of excellent reviews exists. [1, 2, 3] A variety of complex phenomena occur which are also related to the physics of adsorption and wetting. The scenario of wetting requires three distinct phases, for instance the vacuum, the bulk phase and a third phase intervening in between at equilibrium. In case of surface induced disorder (SID, a film of disordered layers at the surface “wets” the bulk phase as the temperature approaches the bulk transition temperature T c,b. The transition at the surface may be continuous (standard critical wetting phenomena), and, as theoretically investigated…

Surface (mathematics)Phase transitionMaterials scienceCondensed matter physicsTransition temperaturePhase (matter)WettingRenormalization groupCritical exponentk-nearest neighbors algorithm
researchProduct