Search results for "renorming"

showing 3 items of 3 documents

On the structure of the set of equivalent norms on ℓ1 with the fixed point property

2012

Abstract Let A be the set of all equivalent norms on l 1 which satisfy the FPP. We prove that A contains rays. In fact, every renorming in l 1 which verifies condition (⁎) in Theorem 2.1 is the starting point of a (closed or open) ray composed by equivalent norms on l 1 with the FPP. The standard norm ‖ ⋅ ‖ 1 or P.K. Linʼs norm defined in Lin (2008) [12] are examples of such norms. Moreover, we study some topological properties of the set A with respect to some equivalent metrics defined on the set of all norms on l 1 equivalent to ‖ ⋅ ‖ 1 .

CombinatoricsDiscrete mathematicsRenorming theoryApplied MathematicsNorm (mathematics)Fixed-point theoremNonexpansive mappingsFixed point theoryEquivalence of metricsFixed-point propertyStabilityAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Sigma-fragmentability and the property SLD in C(K) spaces

AbstractWe characterize two topological properties in Banach spaces of type C(K), namely, being σ-fragmented by the norm metric and having a countable cover by sets of small local norm-diameter (briefly, the property norm-SLD). We apply our results to deduce that Cp(K) is σ-fragmented by the norm metric when K belongs to a certain class of Rosenthal compacta as well as to characterize the property norm-SLD in Cp(K) in case K is scattered.

Countable cover by sets of small local diameterRosenthal compactaRenormingsσ-fragmentabilityTopology and its Applications
researchProduct

On Weakly Locally Uniformly Rotund Banach Spaces

1999

Abstract We show that every normed space E with a weakly locally uniformly rotund norm has an equivalent locally uniformly rotund norm. After obtaining a σ -discrete network of the unit sphere S E for the weak topology we deduce that the space E must have a countable cover by sets of small local diameter, which in turn implies the renorming conclusion. This solves a question posed by Deville, Godefroy, Haydon, and Zizler. For a weakly uniformly rotund norm we prove that the unit sphere is always metrizable for the weak topology despite the fact that it may not have the Kadec property. Moreover, Banach spaces having a countable cover by sets of small local diameter coincide with the descript…

Discrete mathematicsUnit sphereMathematics::Functional AnalysisPure mathematicslocally uniformly rotundBanach spacedescriptive Banach spacesUniformly convex spaceweakly locally uniformly rotundNorm (mathematics)Metrization theoremCountable setrenormingAnalysisMathematicsNormed vector spaceJournal of Functional Analysis
researchProduct