Search results for "resolve"
showing 10 items of 258 documents
Chemical stability of the magnetic oxide EuO directly on silicon observed by hard x-ray photoemission spectroscopy
2011
We present a detailed study of the electronic structure and chemical state of high-quality stoichiometric EuO and O-rich ${\mathrm{Eu}}_{1}{\mathrm{O}}_{1+x}$ thin films grown directly on silicon without any buffer layer using hard x-ray photoemission spectroscopy (HAXPES). We determine the EuO oxidation state from a consistent quantitative peak analysis of $4f$ valence band and $3d$ core-level spectra. The results prove that nearly ideal, stoichiometric, and homogeneous EuO thin films can be grown on silicon, with a uniform depth distribution of divalent Eu cations. Furthermore, we identify the chemical stability of the EuO/silicon interface from Si $2p$ core-level photoemission. This work…
Spatially resolved optical studies of F-center diffusion in KBr crystals.
1996
Spatially resolved optical studies of F-center diffusion during and after the photothermal F\ensuremath{\rightarrow}X color center conversion have been performed by optical scanning and holographic methods in electrolytically colored KBr crystals. Average velocities and diffusion coefficients of F centers have been determined for Gaussian and periodical spatial exposing light intensity distributions. A strong influence of the light intensity gradient has been found on F-center diffusion. It manifests itself by a rapid increase of the effective diffusion coefficient when the light intensity gradient is decreased. This behavior allowed us to explain the observed peculiarities of the holograph…
Femtosecond Raman time-resolved molecular spectroscopy
2004
Abstract The applicability of several femtosecond time resolved non-linear coherent techniques such as Raman induced polarization spectroscopy (RIPS), degenerate four-wave mixing (DFWM) and coherent anti-Stokes Raman spectroscopy (CARS) for molecular spectroscopy is presented. All methods rely on the initial coherent excitation of molecular states producing wavepackets, whose time evolution is then measured. In the case of RIPS and DFWM only pure rotational transitions are involved, whereas in CARS vibrational states can be excited. First the methodology of concentration and temperature measurements using RIPS in gas mixtures involving N2, CO2, O2, and N2O is shown. In addition some applica…
Characterization of used mineral oil condition by spectroscopic techniques
2004
Optical absorption, fluorescence, and quantitative 13C NMR spectroscopy have been used to study the degradation of mineral gearbox oil. Samples of used oil were collected from field service. Measured absorption, fluorescence, and quantitative 13C NMR spectra of used oils show characteristic changes from the spectra of a fresh oil sample. A clearly observable, approximately 20-nm blueshift of the fluorescence emission occurs during the early stages of oil use and correlates with changes in intensity of some specific 13C NMR resonance lines. These changes correlate with oil age because of the connection between the blueshift and breaking of the larger conjugated hydrocarbons of oil as a resul…
Laser-induced time-resolved luminescence in analysis of rare earth elements in apatite and calcite
2021
Laser-induced time-resolved luminescence was used to study rare earth element (REE) containing natural apatite and calcite minerals. The luminescence from 400 nm to 700 nm in the minerals was analyzed with excitation ranges 210–340 nm and 405–535 nm. As an outcome, several useful excitation wavelengths to detect one or more REE from apatite and calcite are reported. The feasibility of selected excitations in e.g. avoiding the disturbance of intense Mn2+ luminescence band, results was demonstrated with a non-gated detector. peerReviewed
On the Shape-Selected, Ligand-Free Preparation of Hybrid Perovskite (CH3NH3PbBr3) Microcrystals and Their Suitability as Model-System for Single-Crys…
2021
Hybrid perovskite materials are one of the most promising candidates for optoelectronic applications, e.g., solar cells and LEDs, which can be produced at low cost compared to established materials. Although this field of research has seen a huge upsurge in the past decade, there is a major lack in understanding the underlying processes, such as shape-property relationships and the role of defects. Our aerosol-assisted synthesis pathway offers the possibility to obtain methylammonium lead bromide (MAPbBr3 ) microcrystals from a liquid single source precursor. The differently shaped particles are aligned on several substrates, without using a directing agent or other additives. The obtained …
The Monod-Wyman-Changeux allosteric model accounts for the quaternary transition dynamics in wild type and a recombinant mutant human hemoglobin
2012
International audience; The acknowledged success of the Monod-Wyman-Changeux (MWC) allosteric model stems from its efficacy in accounting for the functional behavior of many complex proteins starting with hemoglobin (the paradigmatic case) and extending to channels and receptors. The kinetic aspects of the allosteric model, however, have been often neglected, with the exception of hemoglobin and a few other proteins where conformational relaxations can be triggered by a short and intense laser pulse, and monitored by time-resolved optical spectroscopy. Only recently the application of time-resolved wide-angle X-ray scattering (TR-WAXS), a direct structurally sensitive technique, unveiled th…
Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRS-ESR facility
2005
Masses of 582 neutron-deficient nuclides ($30\leq{Z}\leq{85}$) were measured with time-resolved Schottky mass spectrometry at the FRS-ESR facility at GSI, 117 were used for calibration. The masses of 71 nuclides were obtained for the first time. A typical mass accuracy of 30 $\mu$u was achieved. These data have entered the latest atomic mass evaluation. The mass determination of about 140 additional nuclides was possible via known energies ($Q$-values) of $\alpha-$, $\beta-$, or proton decays. The obtained results are compared with the results of other measurements.
From radop to laser spectroscopy and back
1985
The paper reviews some techniques in optical spectroscopy of short-lived nuclei, their results regarding nuclear moments and isotopic shift, and their relation to the work of Professor K. Sugimoto.
Laser spectroscopy of radioactive isotopes
1987
The experimental conditions for laser spectroscopy of shortlived isotopes is discussed with respect to nuclear lifetime, reaction rates and samples preparation by on-line mass-separator techniques. The method of collinear laser spectroscopy is presented with results for medium mass elements near the closed proton shell Z=50. An interpretation of magnetic moments, spectroscopic quadrupole moments and the parabolic shape of the isotope shift in this region of nuclei is given.