Search results for "resonance"
showing 10 items of 6625 documents
Recent improvements of the LPSC charge breeder
2017
International audience; PSC has developed the PHOENIX electron cyclotron resonance Charge Breeder since 2000. The performances have been improved over time acting on the 1+ and N+ beam optics, the base vacuum and the 1+ beam injection. A new objective is to update the booster design to enhance high charge state production and 1+ N+ efficiencies, reduce the co-extracted background beam and improve the ion source tunability. The first step, consisting in increasing the peak magnetic field at injection from 1.2 T to 1.6 T was implemented and significant improvement in 1+N+ efficiencies are reported: 12.9% of 23Na8+, 24.2% of 40Ar8+, 13.3% of 132Xe26+ and 13% of 133Cs26+. The next steps of the …
Photoelectron Emission from Metal Surfaces Induced by Radiation Emitted by a 14 GHz Electron Cyclotron Resonance Ion Source
2015
Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma. peerReviewed
New progress of high current gasdynamic ion source (invited).
2016
The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm−3 ) …
Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated Al2O3 single crystals
2020
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053 and Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion application”. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, the research leading to these results has received funding from the Estonian Research Council grant (PUT PRG619).
Creation and thermal annealing of structural defects in neutron-irradiated MgAl 2 O 4 single crystals
2018
Abstract Several novel hole-type defects (a hole localized at a regular oxygen ion near a negatively charged structural defect) have been revealed in fast neutron irradiated MgAl2O4 crystals using the EPR method. The pulse annealing of the EPR signal of these centers was compared to that of radiation induced optical absorption in the same crystals. Taking into account the determined models of V1, V2 and V22 paramagnetic centers, the tentative scenario of the thermal annealing process of neutron-induced defects (hole-type and complementary electron F-type ones) is proposed. In addition, one more paramagnetic hole center consisting of an Al|Mg as-grown antisite defect near an aluminum vacancy…
EPR and optical spectroscopy of neutron-irradiated Gd3Ga5O12 single crystals
2020
Abstract In this paper, we have performed comparative analysis of EPR, optical absorption (OA) and luminescence spectra for a series of Gd3Ga5O12 (GGG) single crystals irradiated with fast neutrons with fluencies varied from 1016 to 1020n/cm2. In a crystal irradiated with the maximum neutron fluence, the EPR spectra demonstrated the formation of several paramagnetic defects. In particular, EPR spectrum shows a strong resonance at (effective) g ≈ 1.4 with practically isotropic behavior in the crystal rotation around the [1 1 1] direction (magnetic field being perpendicular to [1 1 1]) and several weaker lines in the g ≈ 1.1–2.6 region, which show more pronounced angular dependences. While th…
Charge breeding time investigations of electron cyclotron resonance charge breeders
2018
To qualify electron cyclotron resonance charge breeders, the method that is traditionally used to evaluate the charge breeding time consists in generating a rising edge of the injected beam current and measuring the time in which the extracted multicharged ion beam reaches 90% of its final current. It is demonstrated in the present paper that charge breeding times can be more accurately measured by injecting short pulses of 1 + ions and recording the time resolved responses of N + ions. This method is used to probe the effect of the 1 + ion accumulation in the plasma known to disturb the buffer gas plasma equilibrium and is a step further in understanding the large discrepancies reported in…
Effect of nanostructure layout on spin pumping phenomena in antiferromagnet/nonmagnetic metal/ferromagnet multilayered stacks
2017
In this work we focus on magnetic relaxation in Mn80Ir20(12 nm)/Cu(6 nm)/Py(dF) antiferromagnet/Cu/ferromagnet (AFM/Cu/FM) multilayers with different thickness of the ferromagnetic permalloy layer. An effective FM-AFM interaction mediated via the conduction electrons in the nonmagnetic Cu spacer – the spin-pumping effect – is detected as an increase in the linewidth of the ferromagnetic resonance (FMR) spectra and a shift of the resonant magnetic field. We further find experimentally that the spin-pumping-induced contribution to the linewidth is inversely proportional to the thickness of the Py layer. We show that this thickness dependence likely originates from the dissipative dynamics of …
Relaxation of polarization in (K0.5Na0.5)(Nb0.93Sb0.07)O3 ferroelectric ceramics modified by BaTiO3
2017
ABSTRACTA study of low-frequency relaxation of polarization in conventionally prepared ceramic compounds of (1-x)(K0.5Na0.5)(Nb0.93Sb0.07)O3+xBaTiO3+0.5mol.%MnO2 (x = 0.02, 0.04) examined over a wide temperature range is reported. Anomalous behavior of the temperature dependence of the coercive field Ec(T) is detected in the temperature range of the orthorhombic to tetragonal phase transition. The observed features of polarization are assigned to dynamics of the domain structure at the temperature range of phase coexistence.
High-frequency EPR study on Cu4Cu- and Co4Co-metallacrown complexes
2019
Abstract High-frequency/high-field electron paramagnetic resonance studies on two homonuclear 12-MC-4 metallacrown complexes Cu4Cu and Co4Co are presented. For Cu4Cu, our data imply axial-type g-anisotropy with g x = 2.03 ± 0.01 , g y = 2.04 ± 0.01 , and g z = 2.23 ± 0.01 , yielding g = 2.10 ± 0.02 . No significant zero field splitting (ZFS) of the ground state mode is observed. In Co4Co, we find a m S = ± 3 / 2 ground state with g = 2.66 . The data suggest large anisotropy D of negative sign.