Search results for "s-nitrosylation"

showing 10 items of 22 documents

Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco c…

2012

NO has important physiological functions in plants, including the adaptative response to pathogen attack. We previously demonstrated that cryptogein, an elicitor of defence reaction produced by the oomycete Phytophthora cryptogea , triggers NO synthesis in tobacco. To decipher the role of NO in tobacco cells elicited by cryptogein, in the present study we performed a proteomic approach in order to identify proteins undergoing S-nitrosylation. We provided evidence that cryptogein induced the S-nitrosylation of several proteins and identified 11 candidates, including CDC48 (cell division cycle 48), a member of the AAA+ ATPase (ATPase associated with various cellular activities) family. In vit…

Models Molecular0106 biological sciencesProtein Conformation[SDV]Life Sciences [q-bio]Nicotiana tabacumATPaseMolecular Sequence DataCell Cycle ProteinsNitric Oxide01 natural sciencesBiochemistrycryptogeinFungal Proteins03 medical and health sciencesValosin Containing ProteinTobaccoAmino Acid Sequencenitric oxide (no)Molecular BiologyPlant Proteins030304 developmental biologyAdenosine Triphosphatases0303 health sciencesbiologyWalker motifsCell BiologyS-Nitrosylationcell division cycle 48 (cdc48)Biotic stressbiology.organism_classificationAAA proteinsProtein Structure TertiaryElicitorBiochemistryChaperone (protein)[SDE]Environmental Sciencesbiology.proteins-nitrosylationplant defence responses010606 plant biology & botanyBiochemical Journal
researchProduct

Role Of S-Nitrosylation In The Extrinsic Apoptotic Signalling Pathway In Cancer.

2015

One of the key features of tumour cells is the acquisition of resistance to apoptosis. Thus, determining therapeutic strategies that circumvent apoptotic resistance and result in tumor regression is a challenge. One strategy to induce apoptosis is to activate death receptor signalling pathways. Members of the Tumor Necrosis Factor TNF-family death receptors ligand (TRAIL, FasL and TNF-α) can originate from immune and non-immune cells. Death receptors, engaged by cognate ligands, can initiate multiple signaling pathways, which can generate diverse outcomes, including non-apoptosis-related signal. Knowledge on the molecular mechanisms (that determine death or survival of tumour cells) followi…

Programmed cell deathlcsh:R5-920Organic ChemistryClinical BiochemistryApoptosisS-NitrosylationBiologyCell fate determinationNitric OxideBiochemistryFas ligandCell biologyNeoplasm Proteinslcsh:Biology (General)ApoptosisCell Line TumorNeoplasmsAnimalsHumansTumor necrosis factor alphaSignal transductionReceptorlcsh:Medicine (General)lcsh:QH301-705.5Signal TransductionRedox biology
researchProduct

Protein S-nitrosylation: What's going on in plants?

2012

International audience; Nitric oxide (NO) is now recognized as a key regulator of plant physiological processes. Understanding the mechanisms by which NO exerts its biological functions has been the subject of extensive research. Several components of the signaling pathways relaying NO effects in plants, including second messengers, protein kinases, phytohormones, and target genes, have been characterized. In addition, there is now compelling experimental evidence that NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation and tyrosine nitration. Recently, proteome-wide scale analyses led to the identification of numerous protein candidates for S-…

ProteomeKinaseIn silicoRegulatorPlant ImmunityNitric oxideComputational biologyS-NitrosylationPlantBiologyPlantsPosttranslational protein modificationBiochemistryS-NitrosylationPlant immunityBiochemistry[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyPhysiology (medical)Second messenger system[SDV.BV]Life Sciences [q-bio]/Vegetal BiologySignal transductionGeneProtein Processing Post-TranslationalPlant Proteins
researchProduct

Le monoxyde d'azote (NO) chez les plantes. Un messager cellulaire impliqué dans la signalisation des réponses de défense - l'exemple du modèle N. tab…

2012

[SDE] Environmental Sciencesmonoxyde d'azote[SDV]Life Sciences [q-bio]S-nitrosylationNOcryptogein[SDV] Life Sciences [q-bio]plant defensenitric oxide[SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologydéfense des plantescryptogéine
researchProduct

Nitric oxide (NO) in plants, a cell signalling messenger involved in plant defense. The case study of the N. tabacum / cryptogein model

2013

Communication vers les professionnels SPE IPM CT non renseigné car non soutenu par INRA

[SDE] Environmental Sciencesmonoxyde d'azote[SDV]Life Sciences [q-bio]S-nitrosylationNOcryptogein[SDV] Life Sciences [q-bio]plant defensenitric oxide[SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologydéfense des plantescryptogéine
researchProduct

GAPDH, ntosak and cdc48, a conserved chaperone-like aaa-atpase, as nitric oxide targets in response to (a)biotic stresses

2013

[SDV.SA]Life Sciences [q-bio]/Agricultural sciences[SDE.BE] Environmental Sciences/Biodiversity and Ecology[SDV.SA] Life Sciences [q-bio]/Agricultural sciencesmonoxyde d'azoteCDC48glycéraldéhyde 3-phosphate dehydrogénaseSnRK[SDE.BE]Environmental Sciences/Biodiversity and Ecologyréponse des plantes aux stress (a)biotiqueS-nitrosylation
researchProduct

NO signaling in cryptogein-induced immune responses in tobacco

2014

[SDV] Life Sciences [q-bio][SDE] Environmental SciencesNo signaling[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyS-nitrosylationimmune responsecryptogeinpathogen
researchProduct

Étude de la régulation des calmodulines de Nicotiana tabacum par le monoxyde d’azote

2014

Rapport de stage de Master II R SPE IPM; Master

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesmonoxyde d'azote[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyimmunité chez les plantesS-nitrosylation
researchProduct

Les protéines S-nitrosylées lors des réponses de défense des plantes. Cas de la protéine CDC48 et de l’EPSP Synthase

2012

Rapport de stage de Master 2 Recherche en Biochimie Biologie Cellulaire et Moléculaire (BBCM) SPE IPM CT non renseigné car non soutenu par INRA; Master

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesmonoxyde d'azote[SDV]Life Sciences [q-bio][SDE]Environmental Sciencesplante[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyimmunitéS-nitrosylation
researchProduct

Analysis of the role of nitric oxide (NO) in the cross‐regulation between immunity, growth and iron homeostasis in plants

2019

Studies performed in our Agroecology Department show that the immune response of plants is linked to their iron nutrition and is modulated by pyoverdine, a siderophore produced by the plant beneficial rhizobacteria Pseudomonas fluorescens C7R12. Accordingly, Arabidopsis thaliana plantlets exposed to iron deficiency and treated with pyoverdine in its iron non‐chelated structure (apo‐pyo) show an enhanced growth but a decreased immune response capacity. We hypothesize that nitric oxide (NO), a universal signaling molecule, is a key component of the regulation of the immune response in plants exposed to apo‐pyo and to the C7R12 strain. We checked by fluorescence microscopy that NO is actually …

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencespyoverdinenitric oxide[SDV]Life Sciences [q-bio][SDE]Environmental Sciencess-nitrosylation[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyplant immunitypseudomonas fluorescens
researchProduct