Search results for "s-wave"

showing 6 items of 26 documents

Potentials with SuppressedS-Wave Phase Shift at Low Energies

1972

These results are valid for arbitrary range and depths of the potentials here studied. In spite of the fact that for the general solution we have worked only with a particular radial dependence, for .which an explicit solution for the phase shifts can be written down, it seems plausible that the results have a more general validity. With this generalization in mind, we show that for general shapes of the radial dependence, the phase shifts in Born approximation present the momentum dependence described above. The origin of our results become transparent in this Born approximation treatment. We consider a velocity dependent potential of the form 1 )

Scattering amplitudePhysicsMomentumPhysics and Astronomy (miscellaneous)ScatteringQuantum electrodynamicsQuantum mechanicsS-wavePhase (waves)Scattering lengthScattering theoryBorn approximationProgress of Theoretical Physics
researchProduct

Change of the vortex core structure in two-band superconductors at the impurity-scattering-driven s±/s++ crossover

2017

We report a nontrivial transition in the core structure of vortices in two-band superconductors as a function of interband impurity scattering. We demonstrate that, in addition to singular zeros of the order parameter, the vortices there can acquire a circular nodal line around the singular point in one of the superconducting components. It results in the formation of the peculiar ``moat''-like profile in one of the superconducting gaps. The moat-core vortices occur generically in the vicinity of the impurity-induced crossover between ${s}_{\ifmmode\pm\else\textpm\fi{}}$ and ${s}_{++}$ states.

SuperconductivityPhysicsCondensed matter physicsta114ScatteringCrossovermultiband superconductivityOrder (ring theory)vortices in superconductors02 engineering and technologySingular point of a curve021001 nanoscience & nanotechnology01 natural sciencesVortexImpurityCondensed Matter::Superconductivityimpurities in superconductors0103 physical sciencess-wave010306 general physics0210 nano-technologyLine (formation)Physical Review B
researchProduct

Localization of Multi-Class On-Road and Aerial Targets Using mmWave FMCW Radar

2021

mmWave radars play a vital role in autonomous systems, such as unmanned aerial vehicles (UAVs), unmanned surface vehicles (USVs), ground station control and monitoring systems. The challenging task when using mmWave radars is to estimate the accurate angle of arrival (AoA) of the targets, due to the limited number of receivers. In this paper, we present a novel AoA estimation technique, using mmWave FMCW radars operating in the frequency range 77–81 GHz by utilizing the mechanical rotation. Rotating the radar also increases the field of view in both azimuth and elevation. The proposed method estimates the AoA of the targets, using only a single transmitter and receiver. The measurements are…

mmWave radarTK7800-8360Computer Networks and CommunicationsComputer scienceangle of arrival (AoA)Field of viewFMCW radarlocalizationlaw.inventionlawAngle of arrivalmulti-class targetsElectrical and Electronic EngineeringRadarVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Remote sensingTransmitterElevationmmWave radar; FMCW radar; localization; multi-class targets; angle of arrival (AoA); azimuth angle; elevation angle; range-angle maps; morphological operators; unmanned aerial vehicle localization; UAV localizationazimuth angleDroneAzimuthContinuous-wave radarHardware and ArchitectureControl and Systems EngineeringSignal ProcessingElectronicsElectronics; Volume 10; Issue 23; Pages: 2905
researchProduct

Classification of Targets Using Statistical Features from Range FFT of mmWave FMCW Radars

2021

Radars with mmWave frequency modulated continuous wave (FMCW) technology accurately estimate the range and velocity of targets in their field of view (FoV). The targeted angle of arrival (AoA) estimation can be improved by increasing receiving antennas or by using multiple-input multiple-output (MIMO). However, obtaining target features such as target type remains challenging. In this paper, we present a novel target classification method based on machine learning and features extracted from a range fast Fourier transform (FFT) profile by using mmWave FMCW radars operating in the frequency range of 77–81 GHz. The measurements are carried out in a variety of realistic situations, including p…

mmWave radarrange FFT featuresTK7800-8360Computer Networks and CommunicationsComputer scienceVDP::Technology: 500Fast Fourier transformReal-time computingtargets classificationFMCW radarSupport vector machineContinuous-wave radarStatistical classificationNaive Bayes classifiermachine learningautonomous systemsHardware and ArchitectureControl and Systems EngineeringFeature (computer vision)Angle of arrivalSignal Processingground station radarGradient boostingElectrical and Electronic EngineeringElectronics
researchProduct

Measurement of the soliton number in guiding media through continuum generation.

2020

No general approach is available yet to measure directly the ratio between chromatic dispersion and the nonlinear coefficient, and hence the soliton number for a given optical pulse, in an arbitrary guiding medium. Here we solve this problem using continuum generation. We experimentally demonstrate our method in polarization-maintaining and single-mode fibers with positive and negative chromatic dispersion. Our technique also offers new opportunities to determine the chromatic dispersion of guiding media over a broad spectral range while pumping at a fixed wavelength. (C) 2020 Optical Society of America

optical fiberOptical fiberPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticschromatic dispersionOptics:FÍSICA [UNESCO]law0103 physical sciencesDispersion (optics)supercontinuum generationPhysicsCONTINUOUS-WAVE MEASUREMENT; PHASE-MODULATION METHOD; OPTICAL-FIBERS; SUPERCONTINUUM GENERATION; REFRACTIVE-INDEX; DISPERSION; COEFFICIENT; INTERFEROMETER; NONLINEARITY; COMPRESSIONsoliton propagationContinuum (measurement)business.industrynonlinear opticsUNESCO::FÍSICANonlinear coefficient021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsNonlinear systemWavelengthInterferometry0210 nano-technologybusinessRefractive indexOptics letters
researchProduct

Field-induced coexistence of s++ and s± superconducting states in dirty multiband superconductors

2018

In multiband systems, such as iron-based superconductors, the superconducting states with locking and antilocking of the interband phase differences are usually considered as mutually exclusive. For example, a dirty two-band system with interband impurity scattering undergoes a sharp crossover between the s± state (which favors phase antilocking) and the s++ state (which favors phase locking). We discuss here that the situation can be much more complex in the presence of an external field or superconducting currents. In an external applied magnetic field, dirty two-band superconductors do not feature a sharp s±→s++ crossover but rather a washed-out crossover to a finite region in the parame…

suprajohtavuusCondensed Matter::Superconductivityimpurities in superconductorsmultiband superconductivitys-wavesuprajohteet
researchProduct