Search results for "salinity gradient"
showing 10 items of 60 documents
Performance Analysis of a RED-MED Salinity Gradient Heat Engine
2018
A performance analysis of a salinity gradient heat engine (SGP-HE) is presented for the conversion of low temperature heat into power via a closed-loop Reverse Electrodialysis (RED) coupled with Multi-Effect Distillation (MED). Mathematical models for the RED and MED systems have been purposely developed in order to investigate the performance of both processes and have been then coupled to analyze the efficiency of the overall integrated system. The influence of the main operating conditions (i.e., solutions concentration and velocity) has been quantified, looking at the power density and conversion efficiency of the RED unit, MED Specific Thermal Consumption (STC) and at the overall syste…
Exergy analysis of reverse electrodialysis
2018
Abstract Reverse electrodialysis in closed loop configurations is a promising membrane technology in the energy conversion and storage fields. One of the main advantages of closed-loop reverse electrodialysis is the possibility of using a wide range of operating concentrations, flow rates and different salts for generating the salinity gradient. In this work, an original exergy analysis of the reverse electrodialysis process was carried out in order to investigate reverse electrodialysis performance in terms of energetic and exergetic efficiency parameters in a wide range of operating conditions. A mono-dimensional model of the reverse electrodialysis process was developed, in which all sou…
Boosting the performance of a Reverse Electrodialysis – Multi-Effect Distillation Heat Engine by novel solutions and operating conditions
2019
Abstract This work presents a performance analysis of a waste-heat-to-power Reverse Electrodialysis Heat Engine (RED-HE) with a Multi-Effect Distillation (MED) unit as the regeneration stage. The performance of the system is comparatively evaluated using two different salts, sodium chloride and potassium acetate, and investigating the impact of different working solutions concentration and temperature in the RED unit. For both salt solutions, the impact of membrane properties on the system efficiency is analysed by considering reference ionic exchange membranes and high-performing membranes. Detailed mathematical models for the RED and MED units have been used to predict the thermal efficie…
The first operating thermolytic reverse electrodialysis heat engine
2020
Abstract Thermolytic reverse electrodialysis heat engine (t-RED HE) has been recently proposed as a technology for converting low-temperature waste heat into electricity. The construction and operation of the first world lab-scale prototype unit are reported. The system consists of: (i) a reverse electrodialysis unit where, the concentration gradient between two solutions of thermolytic salts is converted into electricity and (ii) a thermally-driven regeneration unit where low-temperature heat is used to restore the initial conditions of the two feed streams. Regeneration is based on a degradation process of salts into gaseous ammonia and carbon dioxide, which can be removed almost entirely…
Optimization of net power density in Reverse Electrodialysis
2019
Abstract Reverse Electrodialysis (RED) extracts electrical energy from the salinity difference between two solutions using selective ion exchange membranes. In RED, conditions yielding a large net power density (NPD) are generally desired, due to the still large cost of the membranes. NPD depends on a large number of physical and geometric parameters. Some of these, for example the inlet concentrations of concentrate and diluate, can be regarded as “scenario” variables, imposed by external constraints (e.g., availability) or chosen by different criteria than NPD maximization. Others, namely the thicknesses HCONC, HDIL and the velocities UCONC, UDIL in the concentrate and diluate channels, c…
Characterization of pressure retarded osmosis lab-scale systems
2016
Power generation from salinity gradient is a viable alternative to produce energy from renewable sources. Pressure Retarded Osmosis (PRO) is one of the technologies proposed so far for the exploitation of such energy source. In the present preliminary work, two different geometry modules were tested under atmospheric pressure (i.e. forward osmosis or depressurized-PRO conditions). The first one is a conventional planar geometry cell. The second is a customized cylindrical membrane module, able to mechanically support the osmotic membrane along with the spacers. The latter, thanks to its design, allows membranes and spacers to be easily changed for testing purposes. A novel simplified proced…
Cathodic abatement of Cr(VI) in water by microbial reverse-electrodialysis cells
2015
Abstract For the first time a microbial reverse electrodialysis cell (MRC) was used for the treatment of water contaminated by Cr(VI). It has been recently shown that both inorganic and organic pollutants can be removed by reverse electrodialysis processes (RED) using water with different salinity without the supply of electric energy. However, a high number of membrane pairs is usually necessary for the treatment of wastewater by RED. Here, it was showed that a lower number of membranes can be used by the utilization of a MRC (i.e., a RED cell with a biotic anode) for such purposes. Indeed, the abatement of Cr(VI), chosen as model pollutant, was successfully achieved by cathodic reduction …
Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment
2019
Abstract Salinity gradients are a non-conventional source of renewable energy based on the recovery of the Gibbs free energy related to the mixing of solutions at different concentrations. Reverse Electrodialysis is a promising and innovative technology able to convert this energy directly into electric current. The worldwide availability of salinity gradients is limited to those locations where water bodies at different salinity levels are present. The present work analyses a number of different scenarios worldwide, in locations where salinity gradients are naturally available or generated by anthropogenic activities. A techno-economic model of the Reverse Electrodialysis process is presen…
Techno-economic evaluation of Reverse Electrodialysis process in different real environments
2018
Salinity Gradient Power is a promising renewable energy source based on the recovery of the chemical potential released from the mixing of solutions at different concentrations. Natural salinity gradients are extensively available worldwide in natural reservoirs. Reverse Electrodialysis is an innovative technology able to perform a direct conversion of the energy of mixing into electricity. Salinity gradients coming from natural resources or from human activities are worldwide available. In the present work a number of different scenarios, including natural resources (e.g. rivers, seas, lakes and salt ponds), industrial/urban wastes (e.g. brine and treated wastewaters) are analysed. The aim…
Thermal regeneration of ammonium bi-carbonate solutions for closed-loop reverse electrodialysis
2016
Reverse electrodialysis is a novel technology that exploits a salinity gradient to generate electrical energy. The salinity gradient can be available from natural waters such as seawater and river water or they can be artificially generated and used within closed-loop applications. This last option has been recently investigated leading to the development of the RED heat engine concept. In this case, the deployed salinity gradient exiting the RED unit is regenerated in a thermally-driven unit using low-temperature heat, thus being able to convert heat to power within an integrated system. Among the different regeneration alternatives, the use of thermolytic salts has been presented as a pro…