Search results for "scale-space"

showing 10 items of 47 documents

A segmentation algorithm for noisy images

2005

International audience; This paper presents a segmentation algorithm for gray-level images and addresses issues related to its performance on noisy images. It formulates an image segmentation problem as a partition of a weighted image neighborhood hypergraph. To overcome the computational difficulty of directly solving this problem, a multilevel hypergraph partitioning has been used. To evaluate the algorithm, we have studied how noise affects the performance of the algorithm. The alpha-stable noise is considered and its effects on the algorithm are studied. Key words : graph, hypergraph, neighborhood hypergraph, multilevel hypergraph partitioning, image segmentation and noise removal.

020203 distributed computingHypergraphMathematics::Combinatorics[ INFO ] Computer Science [cs]Computer sciencebusiness.industrySegmentation-based object categorizationComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationImage processing02 engineering and technologyImage segmentation[INFO] Computer Science [cs]020202 computer hardware & architectureComputer Science::Computer Vision and Pattern Recognition0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)SegmentationComputer vision[INFO]Computer Science [cs]Artificial intelligencebusinessAlgorithmMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

Automatic detection of hemangiomas using unsupervised segmentation of regions of interest

2016

In this paper we compare the performances of three automatic methods of identifying hemangioma regions in images: 1) unsupervised segmentation using the Otsu method, 2) Fuzzy C-means clustering (FCM) and 3) an improved region growing algorithm based on FCM (RG-FCM). For each image, the starting point of the algorithms is a rectangular region of interest (ROI) containing the hemangioma. For computing the performances of each method, the ROIs had been manually labeled in 2 classes: pixels of hemangioma and pixels of non-hemangioma. The computed scores are given separately for each image, as well as global performances across all ROIs for both classes. The best classification of non-hemangioma…

0301 basic medicineComputer scienceScale-space segmentation02 engineering and technologyOtsu's methodHemangioma03 medical and health sciencessymbols.namesakeMinimum spanning tree-based segmentationRegion of interestHistogram0202 electrical engineering electronic engineering information engineeringmedicineComputer visionSegmentation-based object categorizationbusiness.industryPattern recognitionImage segmentationmedicine.diseaseStatistical classification030104 developmental biologyRegion growingsymbols020201 artificial intelligence & image processingArtificial intelligencebusiness2016 International Conference on Communications (COMM)
researchProduct

Unsupervised low-key image segmentation using curve evolution approach

2013

Low-key images widely exist in imaging-based systems such as space telescopes, medical imaging equipment, machine vision systems. Unsupervised low-key image segmentation is an important process for image analysis or digital measurement in these applications. In this paper, a novel active contour model with the probability density function (PDF) of gamma distribution for image segmentation is proposed. The flexible gamma distribution is used to describe both of the heterogeneous foreground and dark background in a low-key image. Besides, an unsupervised curve initialization method is also designed in this paper, which helps to accelerate the convergence speed of curve evolution. The effectiv…

Active contour modelbusiness.industrySegmentation-based object categorizationComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationInitializationPattern recognitionImage segmentationImage textureComputer Science::Computer Vision and Pattern RecognitionCurve fittingGamma distributionComputer visionArtificial intelligencebusinessMathematics2013 IEEE International Conference on Mechatronics (ICM)
researchProduct

Fuzzy C-Means Segmentation on Brain MR Slices Corrupted by RF-Inhomogeneity

2007

Brain MR Images corrupted by RF-Inhomogeneity exhibit brightness variations in such a way that a standard Fuzzy C-Means (fcm) segmentation algorithm fails. As a consequence, modified versions of the algorithm can be found in literature, which take into account the artifact. In this work we show that the application of a suitable pre-processing algorithm, already presented by the authors, followed by a standard fcm segmentation achieves good results also. The experimental results ones are compared with those obtained using SPM5, which can be considered the state of the art algorithm oriented to brain segmentation and bias removal.

Artifact (error)BrightnessComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationPattern recognitionFuzzy logicBrain segmentationSegmentationComputer visionArtificial intelligenceMr imagesbusinessrf-inhomogeneity bias artifact mri fuzzy c-means segmentationHistogram equalization
researchProduct

Sequential Lip Region Segmentation Using Fuzzy Clustering with Spatial and Temporal Information

2012

For many visual speech recognition and visual speaker authentication systems, lip region extraction is of vital important. In order to segment the lip region accurately and robustly from a lip sequence, a new fuzzy-clustering based algorithm is proposed. In the proposed method, a new dissimilarity measure is introduced to take all the color, spatial and temporal information into consideration. An iterative optimization method is employed to derive the optimal lip region membership map and the final segmentation result. From the experimental results, it is observed that the proposed algorithm can provide superior results compared with other traditional methods.

AuthenticationSequenceFuzzy clusteringComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationPattern recognitionMeasure (mathematics)ComputingMethodologies_PATTERNRECOGNITIONSegmentationArtificial intelligencebusinessTemporal information
researchProduct

Karhunen-Loe`ve transform applied to region-based segmentation of color aerial images

2001

The use of the Karhunen-Loeve transform (KLT) for region- based segmentation of aerial images by color and textural attributes is presented. Our aerial images are shown to be homogeneous color im- ages within the Karhunen-Loeve color representation space, which means they can be represented more easily and the region-based seg- mentation algorithms can be optimized. For texture analysis, the KLT is the basis of the local linear transform (LLT) and allows structural infor- mation about textures to be represented in an optimal and condensed manner. The LLT provides a system of textural analysis in the form of an adapted filter bank. We end the paper by presenting a method for merg- ing textur…

Color histogramContextual image classificationColor imagebusiness.industryComputer scienceGeneral EngineeringScale-space segmentationImage processingImage segmentationAtomic and Molecular Physics and OpticsImage textureRGB color modelComputer visionSegmentationArtificial intelligencebusinessOptical Engineering
researchProduct

Iteratively Learning a Liver Segmentation Using Probabilistic Atlases: Preliminary Results

2016

This works deals with the concept of liver segmentation by using a priori information based on probabilistic atlases and segmentation learning based of previous steps. A probabilistic atlas is here understood as a probability or membership map that tells how likely is that a point belongs to a shape drawn from the shape distribution at hand. We devise a procedure to segment Perfusion Magnetic Resonance liver images that combines both: a probabilistic atlas of the liver and a segmentation algorithm based on global information of previous simpler segmentation steps, local information from close segmented slices and finally a mathematical morphology procedure, namely viscous reconstruction, to…

Computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentation02 engineering and technologyIterative reconstructionMathematical morphology030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringmedicineSegmentationComputer visionComputingMethodologies_COMPUTERGRAPHICSmedicine.diagnostic_testSegmentation-based object categorizationbusiness.industryProbabilistic logicMagnetic resonance imagingPattern recognitionImage segmentationComputer Science::Computer Vision and Pattern Recognition020201 artificial intelligence & image processingArtificial intelligencebusinessPerfusion2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)
researchProduct

A new image segmentation approach using community detection algorithms

2015

Image segmentation has an important role in many image processing applications. Several methods exist for segmenting an image. However, this technique is still a relatively open topic for which various research works are regularly presented. With the recent developments on complex networks theory, image segmentation techniques based on graphs has considerably improved. In this paper, we present a new perspective of image segmentation, by applying three of the most efficient community detection algorithms, Louvain, infomap and stability optimization based on the louvain algorithm, and we extract communities in which the highest modularity feature is achieved. After we show that this measure …

Computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationImage processing02 engineering and technology[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE][INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]03 medical and health sciences0302 clinical medicine[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]Image textureMinimum spanning tree-based segmentation020204 information systems0202 electrical engineering electronic engineering information engineering[INFO]Computer Science [cs]Computer visionSegmentationComputingMilieux_MISCELLANEOUSbusiness.industrySegmentation-based object categorization[INFO.INFO-MM]Computer Science [cs]/Multimedia [cs.MM]Pattern recognitionImage segmentationRegion growingArtificial intelligencebusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingAlgorithm030217 neurology & neurosurgery2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)
researchProduct

Efficient Multi-scale Patch-Based Segmentation

2015

The objective of this paper is to devise an efficient and accurate patch-based method for image segmentation. The method presented in this paper builds on the work of Wu et al. [14] with the introduction of a compact multi-scale feature representation and heuristics to speed up the process. A smaller patch representation along with hierarchical pruning allowed the inclusion of more prior knowledge, resulting in a more accurate segmentation. We also propose an intuitive way of optimizing the search strategy to find similar voxel, making the method computationally efficient. An additional approach at improving the speed was explored with the integration of our method with Optimised PatchMatch…

Computer scienceFeature (computer vision)Segmentation-based object categorizationbusiness.industryFeature vectorScale-space segmentationPattern recognitionSegmentationPruning (decision trees)Image segmentationArtificial intelligencebusinessHeuristics
researchProduct

Extracting cloud motion from satellite image sequences

2004

This paper present a new technique for the estimation of cloud motion, using a sequence of infrared satellite images. It can be considered a challenging task due to the complexity of phenomena implied, as non-linear events and a non-rigid motion. In this circumstances most motion models are not suitable and new algorithms have to be developed. We propose a novel method, combining an Automatic Multilevel Thresholding for image segmentation, a Block Matching Algorithm (BMA) and a best candidate block search along with a vector median regularization.

Computer scienceSegmentation-based object categorizationbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationImage processingPattern recognitionImage segmentationThresholdingImage textureMotion estimationComputer visionArtificial intelligencebusinessBlock-matching algorithm7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002.
researchProduct