Search results for "scale-up"

showing 10 items of 21 documents

Anaerobic membrane bioreactor (AnMBR) scale-up from laboratory to pilot-scale for microalgae and primary sludge co-digestion: Biological and filtrati…

2020

This research work proposes the scale-up evaluation in terms of biological and filtration performance from laboratory to pilot-scale of an anaerobic membrane bioreactor (AnMBR) co-digesting raw microalgae and primary sludge. Best operating conditions for this scale-up were energetically and economically assessed based on laboratory results. Economic balance showed 3% higher annual costs when operating a reactor at 100 d solids retention time (SRT) compared to 70 d SRT. Energetic balance showed a 5.5-fold increase in heat demand working at thermophilic temperature comparing to mesophilic. The AnMBR operating conditions were set at 70 d SRT and 35 °C. The pilot-scale and lab-scale co-digester…

0106 biological sciencesEnvironmental EngineeringBioengineering010501 environmental sciences01 natural scienceslaw.inventionBioreactorsBiogaslaw010608 biotechnologyMicroalgaeBioreactorAnaerobiosisWaste Management and DisposalFiltration0105 earth and related environmental sciencesSewageRenewable Energy Sustainability and the EnvironmentChemical oxygen demandGeneral MedicinePulp and paper industryAnaerobic digestionBiofuelSCALE-UPEnvironmental scienceMethaneFiltrationMesophileBioresource Technology
researchProduct

Recovery of polyhydroxyalkanoates (PHAs) from wastewater : a review

2020

Abstract Polyhydroxyalkanoates (PHAs) are biopolyesters accumulated as carbon and energy storage materials under unbalanced growth conditions by various microorganisms. They are one of the most promising potential substitutes for conventional non-biodegradable plastics due to their similar physicochemical properties, but most important, its biodegradability. Production cost of PHAs is still a great barrier to extend its application at industrial scale. In order to reduce that cost, research is focusing on the use of several wastes as feedstock (such as agro-industrial and municipal organic waste and wastewater) in a platform based on mixed microbial cultures. This review provides a critical…

0106 biological sciencesEnvironmental EngineeringCircular economyScale-upMixed microbial culturesBioengineeringWastewater treatmentWastewater010501 environmental sciencesRaw material01 natural sciencesPolyhydroxyalkanoatesBiopolymers010608 biotechnologyIndustryWaste WaterWaste Management and Disposal0105 earth and related environmental sciencesResource recoverySettore ICAR/03 - Ingegneria Sanitaria-AmbientaleWaste managementRenewable Energy Sustainability and the EnvironmentPolyhydroxyalkanoatesGeneral MedicineBiodegradable wasteResource recoveryBiodegradationCarbonWastewaterSCALE-UPEnvironmental scienceSewage treatment
researchProduct

From lab to industry: Scaling up green geopolymeric mortars manufacturing towards circular economy

2021

Abstract Construction is nowadays considered an extremely energy intensive industry and one of the main sources of environmental pollution in the world. Therefore, the research and the development of novel energy-saving manufacturing processes and sustainable construction materials is more than ever urgent and challenging. This paper aims at identifying the industrial process for the production of novel geopolymers to be used as a greener substitute for cement, especially the Portland one, widely used for structural applications to significantly reduce the environmental impact of the construction industry. Here, the materials sustainability and the manufacturing process are improved by valo…

020209 energyStrategy and ManagementCircular economy Construction Economic analysis Geopolymeric mortars Industrial scale-up SustainabilitySettore ICAR/10 - Architettura TecnicaEnvironmental pollution02 engineering and technologyReuseRaw materialIndustrial and Manufacturing EngineeringCircular economy; Construction; Economic analysis; Geopolymeric mortars; Industrial scale-up; SustainabilitySettore ING-IND/17 - Impianti Industriali Meccanici0202 electrical engineering electronic engineering information engineeringProcess engineering0505 lawGeneral Environmental ScienceRenewable Energy Sustainability and the Environmentbusiness.industryCircular economy05 social sciencesBuilding and ConstructionEnergy consumptionProduct (business)Sustainability050501 criminologyEnvironmental sciencebusinessEmbodied energy
researchProduct

Metabolic and process engineering for biodesulfurization in Gram-negative bacteria

2017

32 p.-2 fig.-1 tab.

0301 basic medicineFossil FuelsGram-negative bacteriaScale-up030106 microbiologychemistry.chemical_elementBioengineeringThiophenesBiologyApplied Microbiology and BiotechnologyMetabolic engineering03 medical and health scienceschemistry.chemical_compoundPseudomonasOperonProcess engineering2. Zero hungerSulfur Compoundsbusiness.industryPseudomonasGeneral Medicinebiology.organism_classificationSulfurEnvironmentally friendly6. Clean waterKineticsBiodesulfurizationBiodegradation EnvironmentalchemistryDibenzothiopheneGram-negative bacteriaGenetic engineeringbusinessOrganosulfur compoundsMetabolic engineeringBacteriaMetabolic Networks and PathwaysDibenzothiopheneBiotechnology
researchProduct

From Screening to Scale-Up: The DoE-Based Optimization of Electrochemical Reduction of l-Cystine at Metal Cathodes

2021

Design of experiment (DoE) is a powerful statistical tool in establishing improved chemical processes. An optimization and scale-up of the electrochemical reduction of l-cystine to l-cysteine is pr...

Chemical processMaterials scienceOrganic ChemistryCystineElectrochemistryCathodelaw.inventionReduction (complexity)Metalchemistry.chemical_compoundchemistryChemical engineeringlawvisual_artSCALE-UPvisual_art.visual_art_mediumPhysical and Theoretical ChemistryOrganic Process Research & Development
researchProduct

ELECTROCHEMICAL CONVERSION OF CARBON DIOXIDE TO FORMIC ACID IN A PRESSURIZZED FILTER PRESS CELL

2018

To limit the negative effect of carbon dioxide as a greenhouse gas, an interesting approach is the utilization of Carbon Capture and Conversion (CCC) methodology, which is focused on the use of CO2 waste as a feedstock to produce added-value product by using the excess electric energy from renewable source [1]. In this framework, an increasing attention has been devoted in the electrochemical conversion of carbon dioxide to formic acid in water [2,3], which is considered one of the more attractive pathway to convert CO2. Since the main hurdle of the CO2 reduction from aqueous solution is the low CO2 solubility in water, in this work, the effect of some operating parameters, including pressu…

Electrochemical reduction CO2 reduction scale-up tin cathode pressure formic acid
researchProduct

Analysis and simulation of scale-up potentials in reverse electrodialysis

2015

The Reverse Electrodialysis (RED) process has been widely accepted as a viable and promising technology to produce electric energy from salinity difference (salinity gradient power - e.g. using river water/seawater, or seawater and concentrated brines). Recent R&D efforts demonstrated how an appropriate design of the RED unit and a suitable selection of process conditions may crucially enhance the process performance. With this regard, a process simulator was developed and validated with experimental data collected on a lab-scale unit, providing a new modelling tool for process optimisation. In this work, performed within the REAPower project (www.reapower.eu), a process simulator previousl…

EngineeringSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimici020209 energySettore ING-IND/25 - Impianti Chimicisea waterprocess simulatorOcean Engineering02 engineering and technology010501 environmental sciencesmodel.01 natural sciencesRiver waterElectric energyReversed electrodialysis0202 electrical engineering electronic engineering information engineeringOsmotic powerProcess engineeringSalinity Gradient Power0105 earth and related environmental sciencesWater Science and Technologybusiness.industryEnvironmental engineeringExperimental dataSalinity Gradient Power; RED; sea water; brine; process simulator; model.REDPollution6. Clean waterProcess conditionsbrineSCALE-UPSeawaterbusiness
researchProduct

On the assessment of power consumption and critical impeller speed in vortexing unbaffled stirred tanks

2017

Abstract Unbaffled stirred tanks are increasingly recognized as a viable alternative to common baffled tanks for a number of processes and bio-processes where the presence of baffles is undesirable. Notwithstanding the increasing industrial interest towards unbaffled tanks, available experimental information on their behaviour is still very poor, even for important parameters such as mechanical power drawn and critical impeller speed (Ncr) at which the transition between non-aerated (sub-critical regime) and aerated (super-critical regime) conditions occurs. In this work the influence of Reynolds and Froude numbers on power consumption characteristics of unbaffled stirred tanks is presented…

EngineeringSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciGeneral Chemical EngineeringScale-upUnbaffled tankSettore ING-IND/25 - Impianti ChimiciMixing (process engineering)BioreactorMechanical engineeringBaffle02 engineering and technologyPower numberVortexing tanksymbols.namesakeImpeller020401 chemical engineeringMixingFroude numberChemical Engineering (all)0204 chemical engineeringShape factorbusiness.industryPower numberChemistry (all)Rotational speedGeneral ChemistryMechanics021001 nanoscience & nanotechnologySCALE-UPsymbols0210 nano-technologybusiness
researchProduct

New silica based adsorbent material from rice straw and its in-flow application to nitrate reduction in waters: Process sustainability and scale-up p…

2021

Abstract This paper shows a particular example to move to a sustainable circular economical process from valorization of rice straw ashes by developing a green synthesis for obtaining a useful sub-product. This strategy can palliate negative effects of the agriculture waste practices on the environment and also the obtained silica reduced nitrate content in waters. It is demonstrated that the silica synthesis developed at lab was scalable more than a hundred times with good results. Adsorption studies of nitrate in standards and real well waters at lab scale and scaling-up provided similar results. Adsorption values near to 15 mg/g for nitrate standards and 8.5 mg/g for well water were obta…

Environmental EngineeringNitratesLab scaleFlow (psychology)OryzaRice strawPulp and paper industrySilicon DioxidePollutionWater Purificationchemistry.chemical_compoundKineticsAdsorptionNitratechemistryScientific methodSCALE-UPSustainabilityEnvironmental ChemistryEnvironmental scienceAdsorptionWaste Management and DisposalWater Pollutants ChemicalThe Science of the total environment
researchProduct

Scale-up and viscosity effects on gas–liquid mass transfer rates in unbaffled stirred tanks

2018

Abstract The interest in the process industry on unbaffled stirred tanks has greatly expanded in the last years because they may bring about significant advantages in a number of applications, including biochemical, food and pharmaceutical processes where the presence of baffles is undesirable for several reasons. Despite their application potential, unbaffled vessels still lack fundamental information, due to the fact that only recently their capabilities have started being dug out. The lack of information on scale up effects is possibly the main reason hindering practical applications. In this work the influence of vessel size and liquid viscosity on the mass transfer performance in unbaf…

Gas-“liquid mass transferWork (thermodynamics)Scale-upSettore ING-IND/25 - Impianti ChimiciGeneral Chemical EngineeringBioreactorUnbaffledBaffle02 engineering and technologyViscosityStirred tank020401 chemical engineeringMass transferChemical Engineering (all)0204 chemical engineeringScale (chemistry)Chemistry (all)General ChemistryMechanics021001 nanoscience & nanotechnologyViscosity effectVessel diameterVolume (thermodynamics)SCALE-UPEnvironmental science0210 nano-technologyChemical Engineering Research and Design
researchProduct