Search results for "scattering albedo"

showing 5 items of 35 documents

Titan's 3-micron spectral region from ISO high-resolution spectroscopy

2006

Abstract The near-infrared spectrum of Titan, Saturn's largest moon and one of the Cassini/Huygens' space mission primary targets, covers the 0.8 to 5 micron region in which it shows several weak CH 4 absorption regions, and in particular one centered near 2.75 micron. Due to the interference of telluric absorption, only part of this window region (2.9–3.1 μm) has previously been observed from the ground [Noll, K.S., Geballe, T.R., Knacke, R., Pendleton, F., Yvonne, J., 1996. Icarus 124, 625–631; Griffith, C.A., Owen, T., Miller, G.A., Geballe, T., 1998. Nature 395, 575–578; Griffith, C.A., Owen, T., Geballe, T.R., Rayner, J., Rannou, P., 2003. Science 300, 628–630; Geballe, T.R., Kim, S.J.…

[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]PhysicsSolar SystemHaze010304 chemical physicsInfraredSingle-scattering albedoAstronomyAstronomy and AstrophysicsTholin01 natural sciences7. Clean energysymbols.namesake[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]13. Climate actionSpace and Planetary SciencePlanet0103 physical sciencessymbolsMixing ratioTitan (rocket family)010303 astronomy & astrophysicsIcarus
researchProduct

Titan's surface and atmosphere from Cassini/VIMS data with updated methane opacity

2013

International audience; We present an analysis of Titan data acquired by the Cassini Visual and Infrared Mapping Spectrometer (VIMS), making use of recent improvements in methane spectroscopic parameters in the region 1.3-5.2 μm. We first analyzed VIMS spectra covering a 8 × 10-km2 area near the Huygens landing site in order to constrain the single scattering albedo (ω0) of the aerosols over all of the VIMS spectral range. Our aerosol model agrees with that derived from Huygens Probe Descent Imager/Spectral Radiometer (DISR) in situ measurements below 1.6 μm. At longer wavelengths, ω0 steadily decreases from 0.92 at 1.6 μm to about 0.70 at 2.5 μm and abruptly drops to about 0.50 near 2.6 μm…

[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Haze010504 meteorology & atmospheric sciencesOpacity[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Single-scattering albedoAstronomy and AstrophysicsTholinAstrophysicsAtmospheric sciences01 natural sciencesSpectral lineAerosolsymbols.namesake13. Climate actionSpace and Planetary Science0103 physical sciencessymbolsAtmosphere of TitanTitan (rocket family)010303 astronomy & astrophysicsGeology0105 earth and related environmental sciences
researchProduct

Atmospheric radiative effects of an in-situ measured Saharan dust plume and the role of large particles

2007

This work will present aerosol size distributions measured in a Saharan dust plume between 0.9 and 12 km altitude during the ACE-2 campaign 1997. The distributions contain a significant fraction of large particles of diameters from 4 to 30 μm. Radiative transfer calculations have been performed using these data as input. Shortwave, longwave as well as total atmospheric radiative effects (AREs) of the dust plume are investigated over ocean and desert within the scope of sensitivity studies considering varied input parameters like solar zenith angle, scaled total dust optical depth, tropospheric standard aerosol profiles and particle complex refractive index. The results indicate that the lar…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric ScienceSaharan dustSingle-scattering albedo[SDU.OCEAN] Sciences of the Universe [physics]/Ocean Atmosphereaerosol radiative effectSolar zenith angleradiative transfer calculationsMineral dustAlbedoAtmospheric sciencesAtmosphärenprozessorenlcsh:QC1-999Aerosoloptical properties of mineral dust particleslcsh:Chemistrylcsh:QD1-999Radiative transferParticleEnvironmental scienceOptical depthlcsh:Physics
researchProduct

A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm

2017

Abstract This study focuses on the calibration of the effective vegetation scattering albedo (ω) and surface soil roughness parameters (H R , and N Rp , p = H,V) in the Soil Moisture (SM) retrieval from L-band passive microwave observations using the L-band Microwave Emission of the Biosphere (L-MEB) model. In the current Soil Moisture and Ocean Salinity (SMOS) Level 2 (L2), v620, and Level 3 (L3), v300, SM retrieval algorithms, low vegetated areas are parameterized by ω = 0 and H R  = 0.1, whereas values of ω = 0.06 − 0.08 and H R  = 0.3 are used for forests. Several parameterizations of the vegetation and soil roughness parameters (ω, H R and N Rp , p = H,V) were tested in this study, tre…

biosphèreL band010504 meteorology & atmospheric sciences[SDV]Life Sciences [q-bio]0211 other engineering and technologieseffective scattering albedo02 engineering and technologyLand coverManagement Monitoring Policy and Law01 natural sciencestélédétection microondesCalibrationhumidité du sol14. Life underwaterComputers in Earth SciencesWater content021101 geological & geomatics engineering0105 earth and related environmental sciencesEarth-Surface ProcessesRemote sensingrugosité de surfaceGlobal and Planetary Changesalinité des océansScatteringVegetation15. Life on landAlbedoL-bandGeographysoil roughnessalbédosoil moistureSoil roughnessSMOSrugosité du sol
researchProduct

Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles

2011

The solar optical properties of Saharan mineral dust observed during the Saharan Mineral Dust Experiment (SAMUM) were explored based on measured size-number distributions and chemical composition. The size-resolved complex refractive index of the dust was derived with real parts of 1.51–1.55 and imaginary parts of 0.0008–0.006 at 550 nm wavelength. At this spectral range a single scattering albedo ω o and an asymmetry parameter g of about 0.8 were derived. These values were largely determined by the presence of coarse particles. Backscatter coefficients and lidar ratios calculated with Mie theory (spherical particles) were not found to be in agreement with independently measured lidar data.…

optical propertiesAtmospheric Scienceradiative transfer simulationsMaterials sciencespectral radiative flux densities010504 meteorology & atmospheric sciencesSingle-scattering albedospheroidal aerosol particlesMie scatteringAtmosphärische SpurenstoffeMineralogy010501 environmental sciencesMineral dustAtmosphärenprozessoren01 natural sciencesComputational physicsSaharan mineral dustExtinction (optical mineralogy)Radiative transferParticlescattering databaseParticle sizeAstrophysics::Earth and Planetary AstrophysicsOptical depth0105 earth and related environmental sciencesTellus B
researchProduct