Search results for "schiff base"

showing 10 items of 180 documents

Switching and redox isomerism in first-row transition metal complexes containing redox active Schiff base ligands.

2014

International audience; The reversible redox isomerisms in first row transition metal complexes of the type ML2 were studied. The six ML2 complexes (M = Mn(III) (), Fe(II) (), Co(III) (), Ni(II) (), Cu(II) () and Zn(II) ()) were synthesized with a redox active Schiff base ligand [2-(3,5-di-tert-butyl-2-hydroxyphenylamino)-4-chlorophenol] (H3L) presenting different oxidation states from -2 to 0 (L(2-), L(-) and L(0)). EPR spectra and magnetic susceptibility measurements indicate the presence of complexes of the type [Mn(III)(L(2-))(L(-))] () with S = 1/2, [Fe(II)(L(-))2] () with S = 2, [Co(III)(L(2-))(L(-))] () with S = 1/2, [Ni(II)(L(-))2] () with S = 1, [Cu(II)(L(-))2] () with S = 1/2 and …

010402 general chemistryLigands01 natural sciencesRedoxlaw.inventionInorganic Chemistrychemistry.chemical_compoundElectron transferTransition metalIsomerismlawCoordination ComplexesMetals HeavyElectron paramagnetic resonanceSchiff BasesValence (chemistry)Schiff base010405 organic chemistryLigand[CHIM.MATE]Chemical Sciences/Material chemistryTautomer0104 chemical sciences3. Good healthCrystallographychemistryOxidation-Reduction
researchProduct

Negative Impact of Citral on Susceptibility of Pseudomonas aeruginosa to Antibiotics

2021

Essential oils (EOs) or their components are widely used by inhalation or nebulization to fight mild respiratory bacterial infections. However, their interaction with antibiotics is poorly known. In this study we evaluated the effects of citral, the main component of lemongrass oil, on in vitro susceptibility of Pseudomonas aeruginosa to antibiotics. Exposure of strain PA14 to subinhibitory concentrations of citral increased expression of operons encoding the multidrug efflux systems MexEF-OprN and MexXY/OprM, and bacterial resistance to anti-pseudomonal antibiotics including imipenem (twofold), gentamicin (eightfold), tobramycin (eightfold), ciprofloxacin (twofold), and colistin (≥128-fold…

0301 basic medicineMicrobiology (medical)antibiotic resistancemedicine.drug_class[SDV]Life Sciences [q-bio]030106 microbiologyAntibioticsmedicine.disease_causeCitralMicrobiologyMicrobiology03 medical and health scienceschemistry.chemical_compoundtobramycin-citral Schiff baseTobramycinmedicine[CHIM]Chemical Sciencesessential oilscitralOriginal ResearchPseudomonas aeruginosaChemistryAminoglycosidecolistin-citral Schiff baseSciences du Vivant [q-bio]/Microbiologie et Parasitologie[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyeffluxQR1-5023. Good health030104 developmental biology[SDV.SP.PHARMA] Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologyPseudomonas aeruginosaColistin[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologyGentamicinEfflux[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriologymedicine.drugFrontiers in Microbiology
researchProduct

Azido and thiocyanato bridged dinuclear Ni(II) complexes involving 8-aminoquinoline based Schiff base as blocking ligands: Crystal structures, ferrom…

2020

Abstract The use of two 8-aminoquinoline-based tridentate N3-donor rigid Schiff base ligands (L1 and L2) with Ni(II) in the presence of the pseudohalides, NaN3 and NaSCN results in the crystallization of the two novel Ni(II) dimers: [Ni2(L1)2(µ1,1′-N3)2(N3)2] (1) and [Ni2(L2)2(µ1,3-NCS)2(NCS)2] (2). Both complexes are centrosymmetric Ni(II) dimers where the Schiff base ligands coordinate the octahedral Ni(II) centres in a mer configuration with one terminal and two bridging pseudohalide ligands in the remaining positions. Complex 1 shows Ni(II) ions connected by a double µ1,1′-N3− bridge whereas in complex 2 the Ni(II) ions are connected by a double µ1,3-NCS− bridge. The magnetic properties…

8-AminoquinolineSchiff baseFerromagnetic material properties010405 organic chemistryCrystal structureAzido/ThiocyanatoNi(II)Crystal structure010402 general chemistry01 natural sciences0104 chemical scienceslaw.inventionIonInorganic ChemistrySchiff baseCrystallographychemistry.chemical_compoundFerromagnetismOctahedronchemistrylawFerromagnetismMaterials ChemistryPhysical and Theoretical ChemistryCrystallizationPolyhedron
researchProduct

Synthesis, characterization of diorganotin(IV) complexes of N-(2-hydroxyarylidene)aminoacetic acid and antitumour screening in vivo in ehrlich ascite…

2001

Some new diorganotin(IV) complexes have been prepared by reacting potassium N-(2-hydroxyarylidene)aminoacetate with R2SnCl2(R = Me,nBu,Ph). The complexes have been characterized by 1H,13C,119Sn NMR, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analysis. In the solid state, the complexes possess penta- and hexa-coordinated tin centres. The hexa-coordinated tin complexes were found to dissociate in solution, giving rise to penta-coordinated species as revealed by 119Sn NMR spectroscopy. Antitumour screening in vivo of the complexes L4snPh2,L4SnPh2· Ph3SnCl and L4SntBU2·t Bu2SnCl2 (L4 = N-(2-hydroxyacetophenone)aminoacetate) is also reported. Copyright © 2001 …

AldiminesynthesisStereochemistryMossbauer spectroscopyInfrared spectroscopyAntitumour activityanimal cellantineoplastic activitydissociationChemical synthesisMedicinal chemistryEhrlich ascites tumor cellEhrlich ascites carcinomaInorganic Chemistryin vivo studychemistry.chemical_compoundAcetic acidOrganotinmalecomplex formationorganotin compoundcontrolled studyCarboxylateinfrared spectroscopyEhrlich ascites carcinoma cellmouseglycine derivativenuclear magnetic resonance spectroscopychemistry.chemical_classificationSchiff basenonhumananimal modelarticleGeneral ChemistryNuclear magnetic resonance spectroscopysolid stateNMRAmino acidchemistryreaction analysiSettore CHIM/03 - Chimica Generale E InorganicaIRSchiff baseschemical analysi
researchProduct

The Crucial Role of Polyatomic Anions in Molecular Architecture: Structural And Magnetic Versatility of Five Nickel(II) Complexes Derived from A N,N,…

2009

Five new nickel(II) complexes [Ni(2)L(2)(N(3))(2)(H(2)O)(2)] (1), [Ni(2)L(2)(NO(3))(2)] (2), [Ni(2)L(2)(O(2)CPh)(CH(3)OH)(2)]ClO(4).0.5CH(3)OH (3), [Ni(3)L(2)(O(2)CPh)(4)] (4), and [Ni(2)L(2)(NO(2))(2)](n) (5) have been synthesized by using a tridentate Schiff base ligand, HL (2-[(3-Methylamino-propylimino)-methyl]-phenol), and the polyatomic monoanions N(3)(-), NO(3)(-), PhCOO(-), or NO(2)(-). The complexes have been structurally and magnetically characterized. The structural analysis reveals that in all five complexes, the Ni(II) ions possess a distorted octahedral geometry. Complexes 1 and 2 are dinuclear with di-mu-1,1-azido and di-mu(2)-phenoxo bridges, respectively. Complex 3 is also …

AnionsSchiff baseMolecular StructureSpectrophotometry InfraredLigandStereochemistryPolyatomic ionchemistry.chemical_elementCrystallography X-RayLigandsIonInorganic ChemistryMagneticschemistry.chemical_compoundNickelCrystallographychemistryNickelOctahedral molecular geometryCarboxylatePhysical and Theoretical ChemistrySchiff BasesInorganic Chemistry
researchProduct

DFT computational study on Fe(III)-N,N′-ethylene-bis(salicylideneiminato) derivatives

2005

DFT calculations, at unrestricted B3LYP level, have been performed on the structures of three iron(III) complexes, Fe(Salen)Cl, [Fe(Salen)]+ and [Fe(Salen)OH2]+, where Salen is the anion of Schiff base ligand N,N′-ethylene-bis (salicylideneimine), considering the spin multiplicity (S) values 2, 4 and 6. The results obtained have been compared with the available structural an magnetic experimental data, allowing us to conclude that a stable form of the FeIII(Salen) complex in aqueous solution should be characterized by an energy stabilization of the S=4 compared to the S=6 state.

Aqueous solutionSchiff baseLigandInorganic chemistryCondensed Matter PhysicsBiochemistryIonEthylene bisCrystallographychemistry.chemical_compoundchemistryMetal salen complexesPhysical and Theoretical ChemistryIron Schiff bases Salen Density functional calculationsSettore CHIM/02 - Chimica Fisica
researchProduct

Mononuclear and tetranuclear Fe(III) complexes with two different types of N, O donor Schiff base ligands

2013

Abstract A mononuclear Fe(III) complex of a tetradentate N 2 O 2 donor Schiff base ligand derived from 3-ethoxysalicaldehyde and ethylenediamine has been reported. In addition two tetranuclear Fe(III) complexes with discrete Fe 4 III (μ 4 -O) cores have been synthesized and characterized using two Schiff base ligands (H 2 L 1–2 ) derived from two different aromatic acid hydrazides and diacetyl monoxime. The mononuclear Fe(III) and one of the tetranuclear Fe(III) complexes have been structurally characterized by single-crystal X-ray crystallography. The mononuclear complex has a highly distorted octahedral geometry. The tetranuclear Fe(III) complexes are found to be rare examples with discre…

Aromatic acidSchiff baseLigandChemistryStereochemistryOrganic ChemistryEthylenediamineAnalytical ChemistryInorganic Chemistrychemistry.chemical_compoundCrystallographyX-ray crystallographyOctahedral molecular geometrySpectroscopyJournal of Molecular Structure
researchProduct

Phosphine-diène and Salicylamidines ligands : coordination chemistry, catalysis and therapy

2017

The subject of this thesis concerns the development of new ligands, their coordination chemistry, and the synthesis of the corresponding metal complexes for catalysis and therapy.The first part of this work relates to the synthesis of diene-phosphine ligands, their saturated analogs, and the corresponding arene-ruthenium complexes. Arene decoordination allows the formation of a cationic bimetallic complex where the ligand is diène-η4/κ-P coordinated to the ruthenium. These complexes have been applied to atom transfer radical addition (ATRA) of CCl4 to styrene. When harsh reaction conditions are used, the superiority of the “diene” complexes is highlighted comparing to saturated analogs.The …

Arène-ruthéniumCatalyse[CHIM.COOR] Chemical Sciences/Coordination chemistryCatalysisAmidineROPChimie de coordinationDièneCoordination chemistrySchiff baseBase de SchiffArene-rutheniumDieneAza-dipyrromethenePLAThérapie[CHIM.COOR]Chemical Sciences/Coordination chemistryTherapyATRAAza-dipyrrométhènePhosphine
researchProduct

Copper(II) complexes with the N,N,O-tridentate ligand 6-amino-5-formyl-1,3-dimethyluracilato-(N6)-benzoylhydrazone: synthesis, spectral and XRD studi…

1999

Abstract From reactions between different Cu(II) salts and the Schiff base 6-amino-5-formyl-1,3-dimethyluracil-benzoylhydrazone (H2BEZDO) in alcohol, six new copper complexes with simplified formulas [Cu(HBEZDO)(H2O)(MeOH)]NO3 (1), [CuCl(HBEZDO)(DMF)] (2), [CuBr(HBEZDO)]·2H2O (3), CuBr(HBEZDO) (4), Cu(ClO4)(HBEZDO)·H2O (5), and Cu(SO4)1/2(HBEZDO)·1 1 2 H2O (6) were isolated. The structures of compounds 1, 2 and 3 have been established by means of XRD diffraction methods. In the three compounds, the Schiff base acts as a tridentate monodeprotonated ligand through the N(6), N(51) and O(52) atoms, making two five- and six-membered chelate rings. In the structure of 1 and 2, the solvent molecul…

BromineSchiff baseStereochemistryLigandDimerchemistry.chemical_elementCrystal structureCopperInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryBromideMaterials ChemistryMoleculePhysical and Theoretical ChemistryPolyhedron
researchProduct

Spectroscopic, crystal structural, theoretical and biological studies of phenylacetohydrazide Schiff base derivatives and their copper complexes

2020

Two phenylacetohydrazide Schiff base derivatives: N’-(1-(2-hydroxyphenyl)ethylidene)-2-phenylacetohydrazide, HL1, and N’-((1-hydroxynaphthalen-2-yl)methylene)-2-phenylacetohydrazide, HL2, were synthesized. HL1 dimerizes in presence of HCl, probably via radical mechanism to give (2,2’-((1E)-hydrazine-1,2-diylidenebis(ethan-1-yl-1-ylidene))diphenol (DIM). Thermal reactions of Cu(II) ions with the two Schiff base ligands resulted in formation of the binuclear complexes [(CuL1)2] and [(CuL2)2]. The stoichiometry and structures of the reported compounds were investigated by several spectroscopic and analytical techniques. The structure of the HL1 ligand and its complex [(CuL1)2] as well as the D…

CT-DNA bindingantioxidant activitychemistry.chemical_elementkupari010402 general chemistry01 natural sciencesAnalytical ChemistryInorganic Chemistrykemialliset sidoksetchemistry.chemical_compoundDFT studiesReactivity (chemistry)copper complexesMethyleneSpectroscopyantioksidantitSchiff base010405 organic chemistryLigandtiheysfunktionaaliteoriaOrganic Chemistrymolecular dockingkompleksiyhdisteetCopper0104 chemical sciencesCrystallographyMolecular geometrychemistrySingle crystalröntgenkristallografiaStoichiometryX-ray analysisJournal of Molecular Structure
researchProduct