Search results for "second order"
showing 10 items of 33 documents
Elliptic equations and maps of bounded length distortion
1988
On considere l'equation elliptique d'ordre 2: L(u)=Σ i,f=1 n ∂ 1 (a ij ∂ ju )=0 ou les coefficients a ij sont des fonctions C 1 dans un domaine D de R n
Sliding solutions of second-order differential equations with discontinuous right-hand side
2017
We consider second-order ordinary differential equations with discontinuous right-hand side. We analyze the concept of solution of this kind of equations and determine analytical conditions that are satisfied by typical solutions. Moreover, the existence and uniqueness of solutions and sliding solutions are studied. Copyright © 2017 John Wiley & Sons, Ltd.
Multiple periodic solutions for Hamiltonian systems with not coercive potential
2010
Under an appropriate oscillating behavior of the nonlinear term, the existence of infinitely many periodic solutions for a class of second order Hamiltonian systems is established. Moreover, the existence of two non-trivial periodic solutions for Hamiltonian systems with not coercive potential is obtained, and the existence of three periodic solutions for Hamiltonian systems with coercive potential is pointed out. The approach is based on critical point theorems. © 2009 Elsevier Inc. All rights reserved.
Multiplicity results for systems of asymptotically linear second order equations
2002
Abstract We prove the existence and multiplicity of solutions, with prescribed nodal properties, for a BVP associated with a system of asymptotically linear second order equations. The applicability of an abstract continuation theorem is ensured by upper and lower bounds on the number of zeros of each component of a solution.
Periodic solutions of a class of non-autonomous second order differential equations with discontinuous right-hand side
2012
Abstract The main goal of this paper is to discuss the existence of periodic solutions of the second order equation: y ″ + η sgn ( y ) = α sin ( β t ) with ( η , α , β ) ∈ R 3 η > 0 . We analyze the dynamics of such an equation around the origin which is a typical singularity of non-smooth dynamical systems. The main results consist in exhibiting conditions on the existence of typical periodic solutions that appear generically in such systems. We emphasize that the mechanism employed here is applicable to many more systems. In fact this work fits into a general program for understanding the dynamics of non-autonomous differential equations with discontinuous right-hand sides.
Stationary Point Processes
2008
Three periodic solutions for perturbed second order Hamiltonian systems
2009
AbstractIn this paper we study the existence of three distinct solutions for the following problem−u¨+A(t)u=∇F(t,u)+λ∇G(t,u)a.e. in [0,T],u(T)−u(0)=u˙(T)−u˙(0)=0, where λ∈R, T is a real positive number, A:[0,T]→RN×N is a continuous map from the interval [0,T] to the set of N-order symmetric matrices. We propose sufficient conditions only on the potential F. More precisely, we assume that G satisfies only a usual growth condition which allows us to use a variational approach.
Existence and multiplicity of periodic solutions for second order Hamiltonian systems depending on a parameter
2013
The existence of at least one nontrivial periodic solution for a class of second order Hamiltonian systems depending on a parameter is obtained, under an algebraic condition on the nonlinearity G and without requiring any asymptotic behavior neither at zero nor at infinity. The existence is still deduced in the particular case when G is subquadratic at zero. Finally, two multiplicity results are proved if G, in addition, is required to fulfill some different Ambrosetti-Rabinowitz type superquadratic conditions at infinity. The approach is fully variational. © Heldermann Verlag.
Indefinite integrals of special functions from hybrid equations
2019
Elementary linear first and second order differential equations can always be constructed for twice differentiable functions by explicitly including the function's derivatives in the definition of ...
Global Non-monotonicity of Solutions to Nonlinear Second-Order Differential Equations
2018
We study behavior of solutions to two classes of nonlinear second-order differential equations with a damping term. Sufficient conditions for the first derivative of a solution x(t) to change sign at least once in a given interval (in a given infinite sequence of intervals) are provided. These conditions imply global non-monotone behavior of solutions.