Search results for "selenourea"
showing 6 items of 6 documents
The Se … Hal halogen bonding: Co-crystals of selenoureas with fluorinated organohalides
2021
Abstract Synthesis and structural characterization of binary co-crystals 1–4 is reported in the present paper. Selenourea and 1,1-dimethylselenourea were used as selenium-containing halogen bond (XB) acceptors and iodopentafluorobenzene (IPFB), 1,4-diiodotetrafluorobenzene (1,4-DIFB) and 1,4-dibromotetrafluorobenzene (1,4-DBrFB) as XB donors. A comparative analysis of the similar binary co-crystals of selenourea and thiourea with a halogen donor revealed that Se … Hal halogen bonds are up to 13.12% shorter than the sum of vdW radii, while in case of S … Hal halogen bonds this value is 11.4%. Therefore, selenium tends to form stronger bonds with halogens than sulfur does. Comparisons of XB i…
CCDC 2039960: Experimental Crystal Structure Determination
2021
Related Article: Maria V. Chernysheva, J. Mikko Rautiainen, Xin Ding, Matti Haukka|2021|J.Solid State Chem.|295|121930|doi:10.1016/j.jssc.2020.121930
CCDC 2039961: Experimental Crystal Structure Determination
2021
Related Article: Maria V. Chernysheva, J. Mikko Rautiainen, Xin Ding, Matti Haukka|2021|J.Solid State Chem.|295|121930|doi:10.1016/j.jssc.2020.121930
CCDC 2039959: Experimental Crystal Structure Determination
2021
Related Article: Maria V. Chernysheva, J. Mikko Rautiainen, Xin Ding, Matti Haukka|2021|J.Solid State Chem.|295|121930|doi:10.1016/j.jssc.2020.121930
CCDC 2039958: Experimental Crystal Structure Determination
2021
Related Article: Maria V. Chernysheva, J. Mikko Rautiainen, Xin Ding, Matti Haukka|2021|J.Solid State Chem.|295|121930|doi:10.1016/j.jssc.2020.121930
The S … Hal and Se … Hal chalcogen bonding in a series of thiourea, selenourea and their derivatives
2021
The chalcogen bonding (ChB) in a series of thiourea, selenourea and their derivatives has been investigated in the present paper. Thus, selenourea and dimethylselenourea undergo dimerization and trimerization processes in the presence of various halogen species (1–5). Selenourea and dimethylselenourea form trimers 3–4 in the presence of lighter halogens (chlorine and bromine) through Se⋯Se chalcogen bonding. When moving to heavier halogen (iodine), the dimers 1–2 are formed. Thiourea and its derivatives also tend to make very strong S⋯S bonds and form dimers in the case of lighter halogens chlorine and bromine (compounds 6–7). However, the monomers separated by the iodine species are formed…