Search results for "semimetals"
showing 5 items of 5 documents
Momentum-space structure of surface states in a topological semimetal with a nexus point of Dirac lines
2016
Three-dimensional topological semimetals come in different variants, either containing Weyl points or Dirac lines. Here we describe a more complicated momentum-space topological defect where several separate Dirac lines connect with each other, forming a momentum-space equivalent of the real-space nexus considered before for helium-3. Close to the nexus the Dirac lines exhibit a transition from type I to type II lines. We consider a general model of stacked honeycomb lattices with the symmetry of Bernal (AB) stacked graphite and show that the structural mirror symmetries in such systems protect the presence of the Dirac lines, and also naturally lead to the formation of the nexus. By the bu…
Momentum-space structure of surface states in a topological semimetal with a nexus point of Dirac lines
2016
Three-dimensional topological semimetals come in different variants, either containing Weyl points or Dirac lines. Here we describe a more complicated momentum-space topological defect where several separate Dirac lines connect with each other, forming a momentum-space equivalent of the real-space nexus considered before for helium-3. Close to the nexus the Dirac lines exhibit a transition from type I to type II lines. We consider a general model of stacked honeycomb lattices with the symmetry of Bernal (AB) stacked graphite and show that the structural mirror symmetries in such systems protect the presence of the Dirac lines, and also naturally lead to the formation of the nexus. By the bu…
Collective amplitude mode fluctuations in a flat band superconductor formed at a semimetal surface
2016
We study the fluctuations of the amplitude (i.e., the Higgs-Anderson) mode in a superconducting system of coupled Dirac particles proposed as a model for possible surface or interface superconductivity in rhombohedral graphite. This system also serves as a generic model of a topological semimetal with an interaction-driven transition on its surface. We show that the absence of Fermi energy and vanishing of the excitation gap of the collective amplitude mode in the model leads to a large fluctuation contribution to thermodynamic quantities, such as the heat capacity. As a consequence, the mean-field theory becomes inaccurate, indicating that the interactions lead to a strongly correlated sta…
Engineering Topological Nodal Line Semimetals in Rashba Spin-Orbit Coupled Atomic Chains
2019
We study an atomic chain in the presence of modulated charge potential and modulated Rashba spin-orbit coupling (RSOC) of equal period. We show that for commensurate periodicities $\lambda=4 n$ with integer $n$, the three-dimensional synthetic space obtained by sliding the two phases of the charge potential and RSOC features a topological nodal line semimetal protected by an antiunitary particle-hole symmetry. The location and shape of the nodal lines strongly depend on the relative amplitude between the charge potential and RSOC.
Nonlinear chiral transport in Dirac semimetals
2018
We study the current of chiral charge density in a Dirac semimetal with two Dirac points in momentum space, subjected to an externally applied time dependent electric field and in the presence of a magnetic field. Based on the kinetic equation approach, we find contributions to the chiral charge current, that are proportional to the second power of the electric field and to the first and second powers of the magnetic field, describing the interplay of the chiral anomaly and the drift motion of electrons moving under the action of electric and magnetic fields.