Search results for "senso."

showing 10 items of 4746 documents

Temporal-spatial characteristics of phase-amplitude coupling in electrocorticogram for human temporal lobe epilepsy.

2017

Objective Neural activity of the epileptic human brain contains low- and high-frequency oscillations in different frequency bands, some of which have been used as reliable biomarkers of the epileptogenic brain areas. However, the relationship between the low- and high-frequency oscillations in different cortical areas during the period from pre-seizure to post-seizure has not been completely clarified. Methods We recorded electrocorticogram data from the temporal lobe and hippocampus of seven patients with temporal lobe epilepsy. The modulation index based on the Kullback-Leibler distance and the phase-amplitude coupling co-modulogram were adopted to quantify the coupling strength between t…

0301 basic medicineAdultMaleTime Factorsmodulation indexModulation indexHippocampuscross-frequency couplingta3112HippocampusLateralization of brain functionTemporal lobe03 medical and health sciencesEpilepsyYoung Adult0302 clinical medicinePhysiology (medical)medicineHumansta113Human braintemporal lobe epilepsyMiddle Agedmedicine.diseaseECoGBrain Wavesta3124Sensory SystemsTemporal LobeElectrodes ImplantedCoupling (electronics)030104 developmental biologymedicine.anatomical_structureNeurologyEpilepsy Temporal LobeFemaleNeurology (clinical)Epileptic seizureElectrocorticographymedicine.symptomfall-max patternPsychologyNeuroscience030217 neurology & neurosurgeryClinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
researchProduct

Long-term physical activity modulates brain processing of somatosensory stimuli: Evidence from young male twins.

2016

Leisure-time physical activity is a key contributor to physical and mental health. Yet the role of physical activity in modulating cortical function is poorly known. We investigated whether precognitive sensory brain functions are associated with the level of physical activity. Physical activity history (3-yr-LTMET), physiological measures and somatosensory mismatch response (sMMR) in EEG were recorded in 32 young healthy twins. In all participants, 3-yr-LTMET correlated negatively with body fat%, r = −0.77 and positively with VO2max, r = 0.82. The fat% and VO2max differed between 15 physically active and 17 inactive participants. Trend toward larger sMMR was seen in inactive compared to ac…

0301 basic medicineAdultMalehuman electrophysiologyFITNESSMISMATCH NEGATIVITY MMN515 PsychologyPhysical activityMonozygotic twinprecognitive brain functionPhysical exerciseSensory systemCHILDRENGatingElectroencephalographyMotor ActivitySomatosensory system03 medical and health sciences0302 clinical medicinephysical exercisemedicineEVOKED-POTENTIALSHumansHealthy Lifestyleta315Evoked PotentialsExerciseYoung malemedicine.diagnostic_testLATENCYGeneral NeuroscienceMEMORYta3141ADULTSSomatosensory Cortex16. Peace & justice3142 Public health care science environmental and occupational healthta3124030104 developmental biologyNeuropsychology and Physiological PsychologyDISCRIMINATIONFemalePsychologyNeurosciencesomatosensory mismatch response030217 neurology & neurosurgeryRESPONSESBiological psychology
researchProduct

When do myopia genes have their effect? Comparison of genetic risks between children and adults

2016

Item does not contain fulltext Previous studies have identified many genetic loci for refractive error and myopia. We aimed to investigate the effect of these loci on ocular biometry as a function of age in children, adolescents, and adults. The study population consisted of three age groups identified from the international CREAM consortium: 5,490 individuals aged 25 years. All participants had undergone standard ophthalmic examination including measurements of axial length (AL) and corneal radius (CR). We examined the lead SNP at all 39 currently known genetic loci for refractive error identified from genome-wide association studies (GWAS), as well as a combined genetic risk score (GRS). …

0301 basic medicineAdultMalemedicine.medical_specialtyBiometryAdolescentGenotypeEpidemiologySingle-nucleotide polymorphismGenome-wide association studyBiologyPolymorphism Single NucleotideConnexinsSensory disorders Donders Center for Medical Neuroscience [Radboudumc 12]03 medical and health sciencesYoung Adult0302 clinical medicineRisk FactorsInternal medicineGenotypemedicineMyopiaSNPHumansAlleleYoung adult610 Medicine & healthChildGenetics (clinical)AllelesGenetic associationGenetics030104 developmental biologyGenetic Loci030221 ophthalmology & optometryPopulation studyFemaleRELamininGenome-Wide Association Study
researchProduct

Acute Exercise Modulates Pain-induced Response on Sensorimotor Cortex ∼20 Hz Oscillation.

2019

Exercise affects positively on self-reported pain in musculoskeletal pain conditions possibly via top-down pain inhibitory networks. However, the role of cortical activity in these networks is unclear. The aim of the current exploratory study was to investigate the effects of acute exercise on cortical nociceptive processing and specifically the excitability in the human sensorimotor cortex. Five healthy adults (mean age 32.8 years) were recorded with a whole-head 306-channel magnetoencephalography (MEG, Elekta Neuromag® Triux™). Participant’s right hand third fingertip was stimulated electrically with an intracutaneous non-magnetic copper tip electrode before and immediately after an exerc…

0301 basic medicineAdultbrain oscillationsPainStimulationEvoked fieldIsometric exerciseliikuntaStimulus (physiology)Inhibitory postsynaptic potentialSomatosensory systemkivunhoito03 medical and health sciences0302 clinical medicineEvoked Potentials SomatosensorymedicineHumanselectrical stimulationsensorimotor cortexExerciseMEGexercisemedicine.diagnostic_testbusiness.industryGeneral NeuroscienceMagnetoencephalographyMagnetoencephalographySomatosensory Cortexaivokuori030104 developmental biologyNociceptionmagnetoencephalographstimulointiSensorimotor CortexbusinessNeuroscience030217 neurology & neurosurgeryliikuntahoitoNeuroscience
researchProduct

Electrical activity controls area-specific expression of neuronal apoptosis in the mouse developing cerebral cortex

2017

Programmed cell death widely but heterogeneously affects the developing brain, causing the loss of up to 50% of neurons in rodents. However, whether this heterogeneity originates from neuronal identity and/or network-dependent processes is unknown. Here, we report that the primary motor cortex (M1) and primary somatosensory cortex (S1), two adjacent but functionally distinct areas, display striking differences in density of apoptotic neurons during the early postnatal period. These differences in rate of apoptosis negatively correlate with region-dependent levels of activity. Disrupting this activity either pharmacologically or by electrical stimulation alters the spatial pattern of apoptos…

0301 basic medicineAgingMouseStimulationCell CountSomatosensory systemMice0302 clinical medicineAnesthesiaBiology (General)whisker deafferentationCerebral CortexNeuronsNeocortexCaspase 3General NeuroscienceQRapoptosisMotor CortexGeneral MedicineAnatomyactivity patternsmedicine.anatomical_structurecell deathCerebral cortexMedicinePrimary motor cortexMotor cortexResearch ArticleProgrammed cell deathQH301-705.5ScienceBiologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesmedicineAnimalsSensory deprivationdevelopmentGeneral Immunology and MicrobiologySomatosensory CortexElectrophysiological Phenomena030104 developmental biologyDevelopmental Biology and Stem Cellsnervous systemAnimals NewbornNeuroscience030217 neurology & neurosurgeryNeuroscienceeLife
researchProduct

Peripapillary fluorescence lifetime reveals age-dependent changes using fluorescence lifetime imaging ophthalmoscopy in rats

2017

Abstract Many fundus diseases accompany fundus autofluorescence change. Fluorescence lifetime imaging ophthalmoscope (FLIO) is a latest technique in imaging fundus autofluorescence. With FLIO, the fundus fluorescence lifetime (FLT) is recorded topographically, assisting to diagnose and monitor multiple fundus diseases. The purpose of this study was to evaluate the repeatability of FLT using FLIO on adult rats and to analyze the age-dependency of the peripapillary FLT of the fundus in a short spectral channel (498–560 nm) and a long spectral channel (560–720 nm). Sprague Dawley rats (n of eyes = 10) were used for repeatability experiments. Age-dependent changes were investigated in young (tw…

0301 basic medicineAgingmedicine.medical_specialtyFluorescence-lifetime imaging microscopygenetic structuresFundus OculiOptic DiskAge dependentFundus (eye)FluorescenceRetinaRats Sprague-DawleyOphthalmoscopy03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineOphthalmologySprague dawley ratsAnimalsMedicineFluorescein Angiographymedicine.diagnostic_testbusiness.industryReproducibility of ResultsRepeatabilityFluorescenceeye diseasesSensory SystemsFundus autofluorescenceRatsOphthalmoscopyOphthalmology030104 developmental biologyModels Animal030221 ophthalmology & optometryFemalesense organsbusinessExperimental Eye Research
researchProduct

2020

Healthy aging is associated with deterioration of the sensorimotor system, which impairs balance and somatosensation. However, the exact age-related changes in the cortical processing of sensorimotor integration are unclear. This study investigated primary sensorimotor cortex (SM1) oscillations in the 15-30 Hz beta band at rest and following (involuntary) rapid stretches to the triceps surae muscles (i.e., proprioceptive stimulation) of young and older adults. A custom-built, magnetoencephalography (MEG)-compatible device was used to deliver rapid (190°·s-1) ankle rotations as subjects sat passively in a magnetically-shielded room while MEG recorded their cortical signals. Eleven young (age…

0301 basic medicineAgingmedicine.medical_specialtymedicine.diagnostic_testProprioceptionbusiness.industryCognitive NeuroscienceStimulationMagnetoencephalographyStimulus (physiology)AudiologySomatosensory system03 medical and health sciencesBeta band030104 developmental biology0302 clinical medicinemedicine.anatomical_structuremedicineYoung adultAnklebusiness030217 neurology & neurosurgeryFrontiers in Aging Neuroscience
researchProduct

Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy

2016

Peripheral or central nerve injury is a frequent cause of chronic pain and the mechanisms are not fully understood. Using newly generated transgenic mice we show that progranulin overexpression in sensory neurons attenuates neuropathic pain after sciatic nerve injury and accelerates nerve healing. A yeast-2-hybrid screen revealed putative interactions of progranulin with autophagy-related proteins, ATG12 and ATG4b. This was supported by colocalization and proteomic studies showing regulations of ATG13 and ATG4b and other members of the autophagy network, lysosomal proteins and proteins involved in endocytosis. The association of progranulin with the autophagic pathway was functionally confi…

0301 basic medicineAutophagy-Related ProteinsMiceProgranulinsGanglia SpinalDorsal root gangliaGranulinsPain MeasurementCD11b AntigenMicrofilament ProteinsChronic painSciatic nerve injuryCysteine Endopeptidasesmedicine.anatomical_structureNociceptionNeurologyNeuropathic painIntercellular Signaling Peptides and Proteinsmedicine.symptomMicrotubule-Associated ProteinsNerve injuryProgranulinSensory Receptor CellsGreen Fluorescent ProteinsPainMice Transgeniclcsh:RC321-571ATG1203 medical and health sciencesLysosomal-Associated Membrane Protein 1mental disordersmedicineAutophagyAnimalslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryActivating Transcription Factor 3Sensory neuronbusiness.industryAutophagyCalcium-Binding ProteinsNerve injurymedicine.diseaseSensory neuronMice Inbred C57BLDisease Models Animal030104 developmental biologyGene OntologyNeuralgiabusinessApoptosis Regulatory ProteinsNeuroscienceNeurobiology of Disease
researchProduct

Cell type specific impact of cannabinoid receptor signaling in somatosensory barrel map formation in mice

2019

Endocannabinoids and their receptors are highly abundant in the developing cerebral cortex and play major roles in early developmental processes, for example, neuronal proliferation, migration, and axonal guidance as well as postnatal plasticity. To investigate the role of the cannabinoid type 1 receptor (CB1) in the formation of sensory maps in the cerebral cortex, the topographic representation of the whiskers in the primary somatosensory cortex (barrel field) of adult mice with different cell type specific genetic deletion of CB1 was studied. A constitutive absence of CB1 (CB1-KO) significantly decreased the total area of the somatosensory cortical map, affecting barrel, and septal areas…

0301 basic medicineBiologySomatosensory systemMice03 medical and health sciencesGlutamatergicOrgan Culture Techniques0302 clinical medicineReceptor Cannabinoid CB1medicineAnimalsMice KnockoutBrain Mappingmusculoskeletal neural and ocular physiologyGeneral Neurosciencefood and beveragesSomatosensory CortexBarrel cortexMice Inbred C57BL030104 developmental biologyCortical mapmedicine.anatomical_structurenervous systemCerebral cortexSensory mapsForebrainGABAergiclipids (amino acids peptides and proteins)Neurosciencepsychological phenomena and processes030217 neurology & neurosurgerySignal TransductionJournal of Comparative Neurology
researchProduct

Structural, ultrastructural, and morphometric study of the zebrafish ocular surface: a model for human corneal diseases?

2018

Purpose: A morphological and morphometric study of the adult zebrafish ocular surface was performed to provide a comprehensive description of its parts and to evaluate its similarity to the human. Materials and Methods: The eyes of adult zebrafish were processed for light, transmission and scanning electron microscopy, and for immunohistochemical stain of corneal nerves; a morphometric analysis was also performed on several morphological parameters. Results: The corneal epithelium was formed by five layers of cells. No Bowman’s layer could be demonstrated. The stroma consisted of lamellae of different thickness with few keratocytes. The Descemet’s membrane was absent as the flat and polygon…

0301 basic medicineBowman's layer; corneal nerves; Descemet's membrane; ocular surface; Zebrafish; Ophthalmology; Sensory Systems; Cellular and Molecular NeuroscienceConjunctivaCorneal StromaBiologycorneal nerveCorneal DiseasesCornea03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineMicroscopy Electron TransmissionCorneamedicineAnimalsHumansTrigeminal NerveBowman MembraneZebrafishDescemet MembraneZebrafishTrigeminal nerveocular surfaceBowman’s layerCorneal DiseasesEndothelium CornealEpithelium CornealDescemet’s membraneEpithelial CellsAnatomybiology.organism_classificationSensory SystemsDescemet's membraneOphthalmology030104 developmental biologymedicine.anatomical_structureModels Animal030221 ophthalmology & optometryUltrastructureMicroscopy Electron ScanningGoblet CellsBowman MembraneConjunctivaCurrent eye research
researchProduct