Search results for "shape optimization"
showing 10 items of 44 documents
Implementation of sparse forward mode automatic differentiation with application to electromagnetic shape optimization
2011
In this paper, we present the details of a simple lightweight implementation of the so-called sparse forward mode automatic differentiation (AD) in the C++programming language. Our implementation and the well-known ADOL-C tool (which utilizes taping and compression techniques) are used to compute Jacobian matrices of two nonlinear systems of equations from the MINPACK-2 test problem collection. Timings of the computations are presented and discussed. Moreover, we perform the shape sensitivity analysis of a time-harmonic Maxwell equation solver using our implementation and the tapeless mode of ADOL-C, which implements the dense forward mode AD. It is shown that the use of the sparse forward …
A New Distributed Optimization Approach for Solving CFD Design Problems Using Nash Game Coalition and Evolutionary Algorithms
2013
For decades, domain decomposition methods (DDM) have provided a way of solving large-scale problems by distributing the calculation over a number of processing units. In the case of shape optimization, this has been done for each new design introduced by the optimization algorithm. This sequential process introduces a bottleneck.
THE TOPOLOGY OPTIMIZATION IN THE PRODUCT DESIGN PROCESS
2009
The design process represents, already for a long time now, a very interesting research field for the scientific community that has tried, through its own activity of research and development, to make it faster, more reliable and efficient. Thanks to this continuous development, during the last years, the product design process has suffered a remarkable improvement, both regarding the methodological aspect, become mostly structured, objective and rational, and as regards the helping tools for the design like, for example, the software CAD, FEM, CFD, that have been improved in their efficiency and functionality. In this context, the development of more and more reliable and simple to use met…
On shape differentiation of discretized electric field integral equation
2013
Abstract This work presents shape derivatives of the system matrix representing electric field integral equation discretized with Raviart–Thomas basis functions. The arising integrals are easy to compute with similar methods as the entries of the original system matrix. The results are compared to derivatives computed with automatic differentiation technique and finite differences, and are found to be in an excellent agreement. Furthermore, the derived formulas are employed to analyze shape sensitivity of the input impedance of a planar inverted F-antenna, and the results are compared to those obtained using a finite difference approximation.
Non-linear optimization of track layouts in loop-sorting-systems
2013
Optimization used for enhancing geometric structures iswell known. Applying obstacles to the shape optimization problemis on the other hand not very common. It requires a fast contact search algorithmand an exact continuous formulation to solve the problem robustly. This paper focuses on combining shape optimization problemswith collision avoidance constraints by which a collision detection algorithmis presented. The presentedmethod is tested against the commercial loop-sorting-system used for sorting of medium sized items. The objective is to minimize price and footprint of the system whilemaintaining its functionality. Contact constraints are in this context important to include as variou…
Signorini problem with Coulomb's law of friction. Shape optimization in contact problems
1992
Definition of a mutual reference shape based on information theory and active contours
2013
In this paper, we propose to consider the estimation of a reference shape from a set of different segmentation results using both active contours and information theory. The reference shape is then defined as the minimum of a criterion that benefits from both the mutual information and the joint entropy of the input segmentations. This energy criterion is here justified using similarities between information theory quantities and area measures, and presented in a continuous variational framework. This framework brings out some interesting evaluation measures such as the specificity and sensitivity. In order to solve this shape optimization problem, shape derivatives are computed for each te…
Wind tunnel testing, numerical analyses and shape optimization of a vertical axis wind turbine
2011
In this work the aerodynamic efficiency of a small commercial vertical axis wind turbine is investigated experimentally and numerically. The turbine is a Darrieus type with three vertical airfoil blades having helical twist of 78 degrees, height 1.45m and diameter of 1.45m. The airfoils have a chord of 222 mm and a thickness of 35 mm. The experimental studies were made in a wind tunnel where a hot-wire anemometer was used to measure the wind speed. The power curves of the turbine were extracted using a generator connected with an inverter able to vary the resistant moment applied to the turbine and to measure its resulting angular speed. The energy produced by the turbine itself at various …
On the Methods for Optimal Shape Design
1990
A short survey of the numerical methods for solving optimal shape design problems is given.