Search results for "shift-invariant"

showing 2 items of 2 documents

Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition

2014

Canonical polyadic decomposition (CPD) may face a local optimal problem when analyzing multi-subject fMRI data with inter-subject variability. Beckmann and Smith proposed a tensor PICA approach that incorporated an independence constraint to the spatial modality by combining CPD with ICA, and alleviated the problem of inter-subject spatial map (SM) variability.This study extends tensor PICA to incorporate additional inter-subject time course (TC) variability and to connect CPD and ICA in a new way. Assuming multiple subjects share common TCs but with different time delays, we accommodate subject-dependent TC delays into the CP model based on the idea of shift-invariant CP (SCP). We use ICA …

Independent component analysis (ICA)Speech recognitionModels NeurologicalMotor ActivityNeuropsychological TestsInter-subject variabilityta3112TimeMulti-subject fMRI dataFingersHumansCanonical polyadic decomposition (CPD)Computer SimulationMotor activityInvariant (mathematics)ta217ta113Brain MappingShift-invariant CP (SCP)General NeuroscienceBrainMagnetic Resonance ImagingIndependent component analysisAuditory PerceptionTensor PICASpatial mapsPsychologyAlgorithmJournal of Neuroscience Methods
researchProduct

Shift-Invariant Canonical Polyadic Decomposition of Complex-Valued Multi-Subject fMRI Data with a Phase Sparsity Constraint

2020

Canonical polyadic decomposition (CPD) of multi-subject complex-valued fMRI data can be used to provide spatially and temporally shared components among groups with both magnitude and phase information. However, the CPD model is not well formulated due to the large subject variability in the spatial and temporal modalities, as well as the high noise level in complex-valued fMRI data. Considering that the shift-invariant CPD can model temporal variability across subjects, we propose to further impose a phase sparsity constraint on the shared spatial maps to denoise the complex-valued components and to model the inter-subject spatial variability as well. More precisely, subject-specific time …

complex-valued fMRI dataComputer sciencespatiotemporal constraintscomputer.software_genrecanonical polyadic decomposition (CPD)030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicinetoiminnallinen magneettikuvausVoxelshift-invariantImage Processing Computer-AssistedmedicineHumansTensorElectrical and Electronic EngineeringInvariant (mathematics)Radiological and Ultrasound Technologymedicine.diagnostic_testsignaalinkäsittelyBrainComplex valuedsignaalianalyysiSignal Processing Computer-Assistedsource phase sparsityMagnetic Resonance ImagingComputer Science ApplicationsNorm (mathematics)Frequency domainSpatial variabilityFunctional magnetic resonance imagingAlgorithmcomputerAlgorithmsSoftware
researchProduct