Search results for "siloxane"

showing 10 items of 121 documents

CCDC 2115739: Experimental Crystal Structure Determination

2022

Related Article: Chris Gendy, Juuso Valjus, Roland Roesler, Heikki M. Tuononen|2022|Angew.Chem.,Int.Ed.|61|e202115692|doi:10.1002/anie.202115692

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(11'-[(1133-tetramethyldisiloxane-13-diyl)bis(methylene)]bis{3-[26-bis(propan-2-yl)phenyl]imidazol-2-ylidene})-(357-tris(trimethylsilyl)bicyclo[2.2.1]heptaphosphane-26-diido)-nickel unknown solvate
researchProduct

CCDC 773505: Experimental Crystal Structure Determination

2011

Related Article: T.Duzak, B.Zarychta, V.V.Olijnyk|2011|Inorg.Chim.Acta|365|235|doi:10.1016/j.ica.2010.09.018

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu~4~-eta^2^eta^2^eta^2^eta^2^-12-dimethyl-1122-tetravinyldisiloxane)-tetrakis(mu~2~-chloro)-tetra-copper(i))Experimental 3D Coordinates
researchProduct

CCDC 186918: Experimental Crystal Structure Determination

2006

Related Article: V.Dirnens, V.Klusa, J.Skuyins, S.Svirskis, S.Germane, A.Kemme, J.Popelis, E.Lukevics|2003|Silicon Chem.|2|11|doi:10.1023/B:SILC.0000047923.82250.32

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscis-13-bis(3-(3-Pyridyl)isoxazolin-5-yl)-1133-tetraphenyldisiloxane trans-13-bis(3-(3-pyridyl)isoxazolin-5-yl)-1133-tetraphenyldisiloxaneExperimental 3D Coordinates
researchProduct

CCDC 1962243: Experimental Crystal Structure Determination

2020

Related Article: Marietta Białoń, Błażej Dziuk, Volodymyr Olijnyk|2020|Eur.J.Inorg.Chem.|2020|1790|doi:10.1002/ejic.202000134

Space GroupCrystallographyCrystal SystemCrystal Structurebis(mu-13-diethenyl-13-dimethyl-13-diphenyldisiloxane)-tetrakis(mu-chloro)-tetra-copper(ii) unknown solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1991689: Experimental Crystal Structure Determination

2020

Related Article: Yaşar Krysiak, Bernd Marler, Bastian Barton, Sergi Plana-Ruiz, Hermann Gies, Reinhard B. Neder, Ute Kolb|2020|IUCrJ|7|522|doi:10.1107/s2052252520003991

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[1-(piperidin-4-yl)methanamine 31111131717212323313745-dodecakis(silyloxy)heptacyclo[17.13.3.3115.339.32531.1713.12127]icosasiloxane-5579151925272929343437414145-hexadecol]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 186917: Experimental Crystal Structure Determination

2006

Related Article: V.Dirnens, V.Klusa, J.Skuyins, S.Svirskis, S.Germane, A.Kemme, J.Popelis, E.Lukevics|2003|Silicon Chem.|2|11|doi:10.1023/B:SILC.0000047923.82250.32

Space GroupCrystallographycis-13-bis(3-(3-Pyridyl)isoxazolin-5-yl)-1133-tetraphenyldisiloxaneCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 886243: Experimental Crystal Structure Determination

2013

Related Article: H.W.P.N'dongo, S.Clement, S.Richeter, F.Guyon, M.Knorr, P.l.Gendre, J.O.Bauer, C.Strohmann|2013|J.Organomet.Chem.|724|262|doi:10.1016/j.jorganchem.2012.11.022

Space GroupCrystallographycis-Dichloro-(1133-tetramethyl-13-bis((phenylsulfanyl)methyl)disiloxane)-palladium(ii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Effect of block copolymer architecture on the interfacial tension between immiscible polymers

2007

The effect of block copolymer additives on the interfacial tension (σ) is studied for the systems polydimethylsiloxane/polyethyleneoxide (A/B) and polyethylmethylsiloxane/polypropyleneoxide by means of a sessile-drop and a pendant-drop-apparatus. Diblockcopolymers (A-block-B), triblockcopolymers (A-block-B-block-A) and “tooth-brush” like copolymers (A backbone, B brushes) served as additives.

Surface tensionchemistry.chemical_classificationchemistry.chemical_compoundMaterials scienceChemical engineeringPolydimethylsiloxanechemistryCopolymerPolymer blendPolymer
researchProduct

The Use of Silicones as Extractants of Biologically Active Substances from Vegetable Raw Materials

2021

Based on theoretical studies, the authors of this paper propose the use of cosmetic organosilicon polymers (commonly called silicones) for the extraction of a complex of biologically active substances contained in vegetable raw materials. It is important to note that the biological molecules do not interact with the organosilicones and, therefore, their properties are not altered after the extraction. In this work, we investigate the efficiency of several polyorganosiloxanes as extractants of vegetable raw materials (Calendula Officialis L. and Artemisia Absinthium L.) useful for the preparation of cosmetic emulsions. Specifically, the extraction studies were conducted by using polyorganosi…

TechnologyQH301-705.5Cosmetic polyorganosiloxanesQC1-999ExtractionRaw materialchemistry.chemical_compoundAntioxidant activityOrganic chemistryGeneral Materials ScienceAqueous and silicone plant extractsBiology (General)QD1-999InstrumentationSettore CHIM/02 - Chimica FisicaOrganosiliconFluid Flow and Transfer Processeschemistry.chemical_classificationBiologically active substancesPolydimethylsiloxaneTPhysicsProcess Chemistry and TechnologySingle componentExtraction (chemistry)General EngineeringPolymerEngineering (General). Civil engineering (General)Silicone oilComputer Science ApplicationsChemistrychemistryBiologically active substancesTA1-2040Applied Sciences
researchProduct

Thermal Stability and Flame Retardancy of Polypropylene Composites Containing Siloxane-Silsesquioxane Resins

2018

A novel group of silsesquioxane derivatives, which are siloxane-silsesquioxane resins (S4SQ), was for the first time examined as possible flame retardants in polypropylene (PP) materials. Thermal stability of the PP/S4SQ composites compared to the S4SQ resins and neat PP was estimated using thermogravimetric (TG) analysis under nitrogen and in air atmosphere. The effects of the non-functionalized and n-alkyl-functionalized siloxane-silsesquioxane resins on thermostability and flame retardancy of PP materials were also evaluated by thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR) and by cone calorimeter tests. The results revealed that the functionalized S4SQ resins may for…

Thermogravimetric analysisMaterials sciencePolymers and Plasticsflame-retardant mechanism02 engineering and technologythermogravimetry010402 general chemistryCombustion01 natural sciencesArticlelcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryCone calorimetersiloxane-silsesquioxane resinscone calorimeter testsThermal stabilityPolypropyleneGeneral Chemistry021001 nanoscience & nanotechnologySilsesquioxane0104 chemical sciencesThermogravimetryChemical engineeringchemistrySiloxane0210 nano-technologypolypropylenePolymers
researchProduct