Search results for "siloxane"
showing 10 items of 121 documents
CCDC 2115739: Experimental Crystal Structure Determination
2022
Related Article: Chris Gendy, Juuso Valjus, Roland Roesler, Heikki M. Tuononen|2022|Angew.Chem.,Int.Ed.|61|e202115692|doi:10.1002/anie.202115692
CCDC 773505: Experimental Crystal Structure Determination
2011
Related Article: T.Duzak, B.Zarychta, V.V.Olijnyk|2011|Inorg.Chim.Acta|365|235|doi:10.1016/j.ica.2010.09.018
CCDC 186918: Experimental Crystal Structure Determination
2006
Related Article: V.Dirnens, V.Klusa, J.Skuyins, S.Svirskis, S.Germane, A.Kemme, J.Popelis, E.Lukevics|2003|Silicon Chem.|2|11|doi:10.1023/B:SILC.0000047923.82250.32
CCDC 1962243: Experimental Crystal Structure Determination
2020
Related Article: Marietta Białoń, Błażej Dziuk, Volodymyr Olijnyk|2020|Eur.J.Inorg.Chem.|2020|1790|doi:10.1002/ejic.202000134
CCDC 1991689: Experimental Crystal Structure Determination
2020
Related Article: Yaşar Krysiak, Bernd Marler, Bastian Barton, Sergi Plana-Ruiz, Hermann Gies, Reinhard B. Neder, Ute Kolb|2020|IUCrJ|7|522|doi:10.1107/s2052252520003991
CCDC 186917: Experimental Crystal Structure Determination
2006
Related Article: V.Dirnens, V.Klusa, J.Skuyins, S.Svirskis, S.Germane, A.Kemme, J.Popelis, E.Lukevics|2003|Silicon Chem.|2|11|doi:10.1023/B:SILC.0000047923.82250.32
CCDC 886243: Experimental Crystal Structure Determination
2013
Related Article: H.W.P.N'dongo, S.Clement, S.Richeter, F.Guyon, M.Knorr, P.l.Gendre, J.O.Bauer, C.Strohmann|2013|J.Organomet.Chem.|724|262|doi:10.1016/j.jorganchem.2012.11.022
Effect of block copolymer architecture on the interfacial tension between immiscible polymers
2007
The effect of block copolymer additives on the interfacial tension (σ) is studied for the systems polydimethylsiloxane/polyethyleneoxide (A/B) and polyethylmethylsiloxane/polypropyleneoxide by means of a sessile-drop and a pendant-drop-apparatus. Diblockcopolymers (A-block-B), triblockcopolymers (A-block-B-block-A) and “tooth-brush” like copolymers (A backbone, B brushes) served as additives.
The Use of Silicones as Extractants of Biologically Active Substances from Vegetable Raw Materials
2021
Based on theoretical studies, the authors of this paper propose the use of cosmetic organosilicon polymers (commonly called silicones) for the extraction of a complex of biologically active substances contained in vegetable raw materials. It is important to note that the biological molecules do not interact with the organosilicones and, therefore, their properties are not altered after the extraction. In this work, we investigate the efficiency of several polyorganosiloxanes as extractants of vegetable raw materials (Calendula Officialis L. and Artemisia Absinthium L.) useful for the preparation of cosmetic emulsions. Specifically, the extraction studies were conducted by using polyorganosi…
Thermal Stability and Flame Retardancy of Polypropylene Composites Containing Siloxane-Silsesquioxane Resins
2018
A novel group of silsesquioxane derivatives, which are siloxane-silsesquioxane resins (S4SQ), was for the first time examined as possible flame retardants in polypropylene (PP) materials. Thermal stability of the PP/S4SQ composites compared to the S4SQ resins and neat PP was estimated using thermogravimetric (TG) analysis under nitrogen and in air atmosphere. The effects of the non-functionalized and n-alkyl-functionalized siloxane-silsesquioxane resins on thermostability and flame retardancy of PP materials were also evaluated by thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR) and by cone calorimeter tests. The results revealed that the functionalized S4SQ resins may for…