Search results for "singularity"
showing 10 items of 352 documents
Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-Infeld
2014
We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a {\it minimal} version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also…
Space-like (vs. time-like) collinear limits in QCD: Is factorization violated?
2012
We consider the singular behaviour of QCD scattering amplitudes in kinematical configurations where two or more momenta of the external partons become collinear. At the tree level, this behaviour is known to be controlled by factorization formulae in which the singular collinear factor is universal (process independent). We show that this strict (process-independent) factorization is not valid at one-loop and higher-loop orders in the case of the collinear limit in space-like regions (e.g., collinear radiation from initial-state partons). We introduce a generalized version of all-order collinear factorization, in which the space-like singular factors retain some dependence on the momentum a…
Analytic result for the nonplanar hexa-box integrals.
2019
In this paper, we analytically compute all master integrals for one of the two non-planar integral families for five-particle massless scattering at two loops. We first derive an integral basis of 73 integrals with constant leading singularities. We then construct the system of differential equations satisfied by them, and find that it is in canonical form. The solution space is in agreement with a recent conjecture for the non-planar pentagon alphabet. We fix the boundary constants of the differential equations by exploiting constraints from the absence of unphysical singularities. The solution of the differential equations in the Euclidean region is expressed in terms of iterated integral…
Matter dependence of the four-loop QCD cusp anomalous dimension: from small angles to all angles
2019
We compute the fermionic contributions to the cusp anomalous dimension in QCD at four loops as an expansion for small cusp angle. As a byproduct we also obtain the respective terms of the four-loop HQET wave function anomalous dimension. Our new results at small angles provide stringent tests of a recent conjecture for the exact angle dependence of the matter terms in the four-loop cusp anomalous dimension. We find that the conjecture does not hold for two of the seven fermionic color structures, but passes all tests for the remaining terms. This provides strong support for the validity of the corresponding conjectured expressions with full angle dependence. Taking the limit of large Minkow…
Dynamical generation of wormholes with charged fluids in quadratic Palatini gravity
2014
The dynamical generation of wormholes within an extension of General Relativity (GR) containing (Planck's scale-suppressed) Ricci-squared terms is considered. The theory is formulated assuming the metric and connection to be independent (Palatini formalism) and is probed using a charged null fluid as a matter source. This has the following effect: starting from Minkowski space, when the flux is active the metric becomes a charged Vaidya-type one, and once the flux is switched off the metric settles down into a static configuration such that far from the Planck scale the geometry is virtually indistinguishable from that of the standard Reissner-Nordstr\"om solution of GR. However, the innerm…
Conifold Transitions and Mirror Symmetry for Calabi-Yau Complete Intersections in Grassmannians
1997
In this paper we show that conifold transitions between Calabi-Yau 3-folds can be used for the construction of mirror manifolds and for the computation of the instanton numbers of rational curves on complete intersection Calabi-Yau 3-folds in Grassmannians. Using a natural degeneration of Grassmannians $G(k,n)$ to some Gorenstein toric Fano varieties $P(k,n)$ with conifolds singularities which was recently described by Sturmfels, we suggest an explicit mirror construction for Calabi-Yau complete intersections $X \subset G(k,n)$ of arbitrary dimension. Our mirror construction is consistent with the formula for the Lax operator conjectured by Eguchi, Hori and Xiong for gravitational quantum c…
Infrared facets of the three-gluon vertex
2021
We present novel lattice results for the form factors of the quenched three-gluon vertex of QCD, in two special kinematic configurations that depend on a single momentum scale. We consider three form factors, two associated with a classical tensor structure and one without tree-level counterpart, exhibiting markedly different infrared behaviors. Specifically, while the former display the typical suppression driven by a negative logarithmic singularity at the origin, the latter saturates at a small negative constant. These exceptional features are analyzed within the Schwinger-Dyson framework, with the aid of special relations obtained from the Slavnov-Taylor identities of the theory. The em…
Mathematical properties of nested residues and their application to multi-loop scattering amplitudes
2021
Journal of high energy physics 02(2), 112 (2021). doi:10.1007/JHEP02(2021)112
Wormholes and nonsingular spacetimes in Palatinif(R)gravity
2015
We reconsider the problem of $f(R)$ theories of gravity coupled to Born-Infeld theory of electrodynamics formulated in a Palatini approach, where metric and connection are independent fields. By studying electrovacuum configurations in a static and spherically symmetric space-time, we find solutions which reduce to their Reissner-Nordstr\"om counterparts at large distances but undergo important non-perturbative modifications close to the center. Our new analysis reveals that the point-like singularity is replaced by a finite-size wormhole structure, which provides a geodesically complete and thus nonsingular space-time, despite the existence of curvature divergences at the wormhole throat. …
Nonsingular black holes, wormholes, and de Sitter cores from anisotropic fluids
2017
We study Born-Infeld gravity coupled to an anisotropic fluid in a static, spherically symmetric background. The free function characterizing the fluid is selected on the following grounds: i) recovery of the Reissner-Nordstr\"om solution of GR at large distances, ii) fulfillment of classical energy conditions and iii) inclusion of models of nonlinear electrodynamics as particular examples. Four branches of solutions are obtained, depending on the signs of two parameters on the gravity and matter sectors. On each branch, we discuss in detail the modifications on the innermost region of the corresponding solutions, which provides a plethora of configurations, including nonsingular black holes…