Search results for "singularity"
showing 10 items of 352 documents
ON THE INDEX OF VECTOR FIELDS TANGENT TO HYPERSURFACES WITH NON-ISOLATED SINGULARITIES
2002
Let $F$ be a germ of a holomorphic function at $0$ in ${\bb C}^{n+1}$ , having $0$ as a critical point not necessarily isolated, and let $\tilde{X}:= \sum^n_{j=0} X^j(\partial/\partial z_j)$ be a germ of a holomorphic vector field at $0$ in ${\bb C}^{n+1}$ with an isolated zero at $0$ , and tangent to $V := F^{-1}(0)$ . Consider the ${\cal O}_{V,0}$ -complex obtained by contracting the germs of Kahler differential forms of $V$ at $0$ \renewcommand{\theequation}{0.\arabic{equation}} \begin{equation} \Omega^i_{V,0}:=\frac{\Omega^i_{{\bb C}^{n+1},0}}{F\Omega^i_{{\bb C}^{n+1},0}+dF\wedge{\Omega^{i-1}}_{{\bb C}^{n+1}},0} \end{equation} with the vector field $X:=\tilde{X}|_V$ on $V$ : \begin{equa…
SELF-ENERGIES AND VERTEX CORRECTIONS WITH TWO FACTORIZING LOOPS
1999
A complete set of factorizing two-loop self-energies and vertex corrections is calculated analytically for arbitrary masses and momenta — including the case of collinear singularities — within the ℛ-functions approach.
About Compactness of Faddeev Integral Equations for Three Charged Particles
1999
Momentum space three-body integral equations of the Faddeev type can not be used for Coulomb-like potentials, for energies above the breakup threshold. The reason is the occurrence of singularities in their kernels which destroy the compactness properties known to exist for purely short-range interactions. Using the rigorously equivalent formulation in terms of an effective-two- body theory, we prove that the nondiagonal kernels occurring therein possess on and off the energy shell only integrable singularities, provided all three particles have charges of the same sign (ie., only repulsive Coulomb interactions). In contrast, if some of the charges have opposite signs the nondiagonal kernel…
A Lebesgue-type decomposition for non-positive sesquilinear forms
2018
A Lebesgue-type decomposition of a (non necessarily non-negative) sesquilinear form with respect to a non-negative one is studied. This decomposition consists of a sum of three parts: two are dominated by an absolutely continuous form and a singular non-negative one, respectively, and the latter is majorized by the product of an absolutely continuous and a singular non-negative forms. The Lebesgue decomposition of a complex measure is given as application.
Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array
2014
In this paper we investigate the asymptotic validity of boundary layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl's solution to Navier-Stokes solutions at different $Re$ numbers. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions between the boundary layer and the outer flow. These interactions can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous int…
Singularity formation for Prandtl’s equations
2009
Abstract We consider Prandtl’s equations for an impulsively started disk and follow the process of the formation of the singularity in the complex plane using the singularity tracking method. We classify Van Dommelen and Shen’s singularity as a cubic root singularity. We introduce a class of initial data, uniformly bounded in H 1 , which have a dipole singularity in the complex plane. These data lead to a solution blow-up whose time can be made arbitrarily short within the class. This is numerical evidence of the ill-posedness of the Prandtl equations in H 1 . The presence of a small viscosity in the streamwise direction changes the behavior of the singularities. They stabilize at a distanc…
Complex singularities in KdV solutions
2016
In the small dispersion regime, the KdV solution exhibits rapid oscillations in its spatio-temporal dependence. We show that these oscillations are caused by the presence of complex singularities that approach the real axis. We give a numerical estimate of the asymptotic dynamics of the poles.
An example of cancellation of infinities in the star-quantization of fields
1993
Within the *-quantization framework, it is shown how to remove some of the divergences occurring in theλo 2 4 -theory by introducing aλ-dependent *-product cohomologically equivalent to the normal *-product.
Explicit Characterization of Inclusions in Electrical Impedance Tomography
2001
In electrical impedance tomography one seeks to recover the spatial conductivity distribution inside a body from knowledge of the Neumann--Dirichlet map. In many practically relevant situations the conductivity is smooth apart from some inhomogeneities where the conductivity jumps to a higher or lower value. An explicit characterization of these inclusions is developed in this paper. To this end a class of dipole-like indicator functions is introduced, for which one has to check whether their boundary values are contained in the range of an operator determined by the measured Neumann--Dirichlet map. It is shown that this holds true if and only if the dipole singularity lies inside the inhom…
Vereinfachte Rekursionen zur Richardson-Extrapolation in Spezialf�llen
1975
Recursions are given for Richardson-extrapolation based on generalized asymptotic expansions for the solution of a finite algorithm depending upon a parameterh>0. In particular, these expansions may contain terms likeh ?·log(h), (?>0). Simplified formulae are established in special cases. They are applicable to numerical integration of functions with algebraic or logarithmic endpoint singularities and provide a Romberg-type quadrature.