Search results for "singularity"

showing 10 items of 352 documents

Darboux systems with a cusp point and pseudo-abelian integrals

2018

International audience; We study pseudo-abelian integrals associated with polynomial deformations of Darboux systems having a cuspidal singularity. Under some genericity hypothesis we provide locally uniform boundedness of on the number of their zeros.

[ MATH ] Mathematics [math]Cusp (singularity)Pure mathematicsPolynomialApplied Mathematics[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]010102 general mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Darboux integrability[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Pseudo-abelian integrals[MATH] Mathematics [math]01 natural sciences010101 applied mathematicsLimit cyclesSingularityUniform boundednessPoint (geometry)First integral0101 mathematicsAbelian groupMSC : 34C07 ; 34C08[MATH]Mathematics [math]AnalysisMathematics
researchProduct

Rotation Forms and Local Hamiltonian Monodromy

2017

International audience; The monodromy of torus bundles associated with completely integrable systems can be computed using geometric techniques (constructing homology cycles) or analytic arguments (computing discontinuities of abelian integrals). In this article, we give a general approach to the computation of monodromy that resembles the analytical one, reducing the problem to the computation of residues of polar 1-forms. We apply our technique to three celebrated examples of systems with monodromy (the champagne bottle, the spherical pendulum, the hydrogen atom) and to the case of non-degenerate focus-focus singularities, re-obtaining the classical results. An advantage of this approach …

[ MATH ] Mathematics [math]Pure mathematicsIntegrable systemFOCUS-FOCUS SINGULARITIESmath-phFOS: Physical sciencesDynamical Systems (math.DS)Homology (mathematics)01 natural sciencesSingularityMathematics::Algebraic Geometrymath.MPSYSTEMS0103 physical sciencesFOS: Mathematics0101 mathematicsAbelian groupMathematics - Dynamical Systems[MATH]Mathematics [math]010306 general physicsMathematics::Symplectic GeometryMathematical PhysicsMathematicsNEIGHBORHOODS[PHYS]Physics [physics][ PHYS ] Physics [physics]010102 general mathematicsSpherical pendulumStatistical and Nonlinear PhysicsTorusMathematical Physics (math-ph)37JxxMonodromyStatistical and Nonlinear Physics; Mathematical PhysicsGravitational singularityPOINTSmath.DS
researchProduct

Geodesic flow of the averaged controlled Kepler equation

2008

A normal form of the Riemannian metric arising when averaging the coplanar controlled Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main properties. The restriction of the metric to $\SS^2$ is shown to be conformal to the flat metric on an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the standard astroid. Though not complete because of a singularity in the space of ellipses, the metric has convexity properties that are expressed in terms of the aforementioned invariants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged controll…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyGeodesicGeneral MathematicsCut locusConformal map02 engineering and technologyKepler's equationFundamental theorem of Riemannian geometry01 natural sciencesConvexityIntrinsic metricsymbols.namesake020901 industrial engineering & automationSingularity0101 mathematicsorbit transferMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]cut and conjugate lociRiemannian metrics49K15 70Q05symbols[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
researchProduct

Second order optimality conditions in the smooth case and applications in optimal control

2007

International audience; The aim of this article is to present algorithms to compute the first conjugate time along a smooth extremal curve, where the trajectory ceases to be optimal. It is based on recent theoretical developments of geometric optimal control, and the article contains a review of second order optimality conditions. The computations are related to a test of positivity of the intrinsic second order derivative or a test of singularity of the extremal flow. We derive an algorithm called COTCOT (Conditions of Order Two and COnjugate times), available on the web, and apply it to the minimal time problem of orbit transfer, and to the attitude control problem of a rigid spacecraft. …

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyMathematical optimizationControl and Optimization02 engineering and technology01 natural sciences020901 industrial engineering & automationJacobi fieldSingularity0101 mathematicsorbit transferMathematicsSecond derivativeJacobi fieldsecond-order intrinsic derivative010102 general mathematicsConjugate pointsattitude control49K15 49-04 70Q05[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Optimal controlComputational MathematicsFlow (mathematics)Control and Systems EngineeringTrajectoryconjugate pointLagrangian singularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Orbit (control theory)
researchProduct

On local optima in minimum time control of the restricted three-body problem

2016

International audience; The structure of local minima for time minimization in the controlled three-body problem is studied. Several homotopies are systematically used to unfold the structure of these local minimizers, and the resulting singularity of the path associated with the value function is analyzed numerically.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyMathematical optimizationHomotopyCircular restricted three body problemShooting Homotopy02 engineering and technologyMSC : 70F07 (49K15 49N90 58K99)Optimal controlThree-body problem01 natural sciencesOptimal controlMaxima and minimaSwallowtail singularity020901 industrial engineering & automationSingularityLocal optimumBellman equation0103 physical sciencesPath (graph theory)Applied mathematics[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]010303 astronomy & astrophysicsMathematics
researchProduct

Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces

2014

International audience; We combine geometric and numerical techniques - the Hampath code - to compute conjugate and cut loci on Riemannian surfaces using three test bed examples: ellipsoids of revolution, general ellipsoids, and metrics with singularities on S2 associated to spin dynamics.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]Code (set theory)Spin dynamicsGeometryspin dynamics01 natural sciencesoptimal controlsymbols.namesakeGaussian curvature0101 mathematicsGeneral ellipsoidMathematics010102 general mathematics[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Optimal controlUmbilical pointEllipsoidOptimal controlCalcul parallèle distribué et partagé010101 applied mathematicsSpindynaicssymbolsgeneral ellipsoidGravitational singularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Conjugate and cut lociConjugate
researchProduct

Minimum Time Control of the Restricted Three-Body Problem

2012

The minimum time control of the circular restricted three-body problem is considered. Controllability is proved on an adequate submanifold. Singularities of the extremal flow are studied by means of a stratification of the switching surface. Properties of homotopy maps in optimal control are framed in a simple case. The analysis is used to perform continuations on the two parameters of the problem: The ratio of the masses, and the magnitude of the control.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]Surface (mathematics)0209 industrial biotechnologyControl and OptimizationApplied MathematicsHomotopy010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]02 engineering and technologyThree-body problemOptimal controlSubmanifold01 natural sciencesControllability020901 industrial engineering & automationSimple (abstract algebra)Gravitational singularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematicsMathematicsSIAM Journal on Control and Optimization
researchProduct

On some Riemannian aspects of two and three-body controlled problems

2009

The flow of the Kepler problem (motion of two mutually attracting bodies) is known to be geodesic after the work of Moser [20], extended by Belbruno and Osipov [2, 21]: Trajectories are reparameterizations of minimum length curves for some Riemannian metric. This is not true anymore in the case of the three-body problem, and there are topological obstructions as observed by McCord et al. [19]. The controlled formulations of these two problems are considered so as to model the motion of a spacecraft within the influence of one or two planets. The averaged flow of the (energy minimum) controlled Kepler problem with two controls is shown to remain geodesic. The same holds true in the case of o…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]Work (thermodynamics)Geodesic010102 general mathematicsMathematical analysisMotion (geometry)[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Optimal control01 natural sciencesOptimal controlsymbols.namesakeFlow (mathematics)Kepler problemCut and conjugate loci0103 physical sciencesMetric (mathematics)symbolsGeodesic flowTwo and three-body problems49K15 53C20 70Q05Gravitational singularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematics010303 astronomy & astrophysicsMathematics
researchProduct

Parabolic equations with nonlinear singularities

2011

Abstract We show the existence of positive solutions u ∈ L 2 ( 0 , T ; H 0 1 ( Ω ) ) for nonlinear parabolic problems with singular lower order terms of the asymptote-type. More precisely, we shall consider both semilinear problems whose model is { u t − Δ u + u 1 − u = f ( x , t ) in Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , and quasilinear problems having natural growth with respect to the gradient, whose model is { u t − Δ u + ∣ ∇ u ∣ 2 u γ = f ( x , t ) in Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , with γ > 0 . Moreover, we prove a comparison principle and, as an application, we study the asymptotic behav…

asymptotic behavior; nonlinear parabolic equations; singular parabolic equationsApplied MathematicsMathematical analysisnonlinear parabolic equationsLower ordersingular parabolic equationsParabolic partial differential equationNonlinear parabolic equationsNonlinear systemGravitational singularityasymptotic behaviorSingular equationU-1AnalysisMathematicsMathematical physicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Airy-function approach to binary black hole merger waveforms: The fold-caustic diffraction model

2022

From numerical simulations of the Einstein equations, and also from gravitational wave observations, the gravitational wave signal from a binary black hole merger is seen to be simple and to possess certain universal features. The simplicity is somewhat surprising given that non-linearities of general relativity are thought to play an important role at the merger. The universal features include an increasing amplitude as we approach the merger, where transition from an oscillatory to a damped regime occurs in a pattern apparently oblivious to the initial conditions. We propose an Airy-function pattern to model the binary black hole (BBH) merger waveform, focusing on accounting for its simpl…

catastrophe theorywave function[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]black hole: binary: coalescencegravitational radiationFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)oscillationsingularityboundary conditionGeneral Relativity and Quantum Cosmologyregularizationrainbowgeneral relativityopticalnonlineardiffraction: modeluniversalityasymptotic behaviorEinstein equationcapturenumerical calculationssimplexoptics: geometrical
researchProduct