Search results for "singularity"
showing 10 items of 352 documents
Darboux systems with a cusp point and pseudo-abelian integrals
2018
International audience; We study pseudo-abelian integrals associated with polynomial deformations of Darboux systems having a cuspidal singularity. Under some genericity hypothesis we provide locally uniform boundedness of on the number of their zeros.
Rotation Forms and Local Hamiltonian Monodromy
2017
International audience; The monodromy of torus bundles associated with completely integrable systems can be computed using geometric techniques (constructing homology cycles) or analytic arguments (computing discontinuities of abelian integrals). In this article, we give a general approach to the computation of monodromy that resembles the analytical one, reducing the problem to the computation of residues of polar 1-forms. We apply our technique to three celebrated examples of systems with monodromy (the champagne bottle, the spherical pendulum, the hydrogen atom) and to the case of non-degenerate focus-focus singularities, re-obtaining the classical results. An advantage of this approach …
Geodesic flow of the averaged controlled Kepler equation
2008
A normal form of the Riemannian metric arising when averaging the coplanar controlled Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main properties. The restriction of the metric to $\SS^2$ is shown to be conformal to the flat metric on an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the standard astroid. Though not complete because of a singularity in the space of ellipses, the metric has convexity properties that are expressed in terms of the aforementioned invariants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged controll…
Second order optimality conditions in the smooth case and applications in optimal control
2007
International audience; The aim of this article is to present algorithms to compute the first conjugate time along a smooth extremal curve, where the trajectory ceases to be optimal. It is based on recent theoretical developments of geometric optimal control, and the article contains a review of second order optimality conditions. The computations are related to a test of positivity of the intrinsic second order derivative or a test of singularity of the extremal flow. We derive an algorithm called COTCOT (Conditions of Order Two and COnjugate times), available on the web, and apply it to the minimal time problem of orbit transfer, and to the attitude control problem of a rigid spacecraft. …
On local optima in minimum time control of the restricted three-body problem
2016
International audience; The structure of local minima for time minimization in the controlled three-body problem is studied. Several homotopies are systematically used to unfold the structure of these local minimizers, and the resulting singularity of the path associated with the value function is analyzed numerically.
Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces
2014
International audience; We combine geometric and numerical techniques - the Hampath code - to compute conjugate and cut loci on Riemannian surfaces using three test bed examples: ellipsoids of revolution, general ellipsoids, and metrics with singularities on S2 associated to spin dynamics.
Minimum Time Control of the Restricted Three-Body Problem
2012
The minimum time control of the circular restricted three-body problem is considered. Controllability is proved on an adequate submanifold. Singularities of the extremal flow are studied by means of a stratification of the switching surface. Properties of homotopy maps in optimal control are framed in a simple case. The analysis is used to perform continuations on the two parameters of the problem: The ratio of the masses, and the magnitude of the control.
On some Riemannian aspects of two and three-body controlled problems
2009
The flow of the Kepler problem (motion of two mutually attracting bodies) is known to be geodesic after the work of Moser [20], extended by Belbruno and Osipov [2, 21]: Trajectories are reparameterizations of minimum length curves for some Riemannian metric. This is not true anymore in the case of the three-body problem, and there are topological obstructions as observed by McCord et al. [19]. The controlled formulations of these two problems are considered so as to model the motion of a spacecraft within the influence of one or two planets. The averaged flow of the (energy minimum) controlled Kepler problem with two controls is shown to remain geodesic. The same holds true in the case of o…
Parabolic equations with nonlinear singularities
2011
Abstract We show the existence of positive solutions u ∈ L 2 ( 0 , T ; H 0 1 ( Ω ) ) for nonlinear parabolic problems with singular lower order terms of the asymptote-type. More precisely, we shall consider both semilinear problems whose model is { u t − Δ u + u 1 − u = f ( x , t ) in Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , and quasilinear problems having natural growth with respect to the gradient, whose model is { u t − Δ u + ∣ ∇ u ∣ 2 u γ = f ( x , t ) in Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , with γ > 0 . Moreover, we prove a comparison principle and, as an application, we study the asymptotic behav…
Airy-function approach to binary black hole merger waveforms: The fold-caustic diffraction model
2022
From numerical simulations of the Einstein equations, and also from gravitational wave observations, the gravitational wave signal from a binary black hole merger is seen to be simple and to possess certain universal features. The simplicity is somewhat surprising given that non-linearities of general relativity are thought to play an important role at the merger. The universal features include an increasing amplitude as we approach the merger, where transition from an oscillatory to a damped regime occurs in a pattern apparently oblivious to the initial conditions. We propose an Airy-function pattern to model the binary black hole (BBH) merger waveform, focusing on accounting for its simpl…