Search results for "singularity"
showing 10 items of 352 documents
Gauss maps on canal hypersurfaces of generic curves in R4
2021
Abstract We analyze the generic behavior of the Gauss map in a special case provided by the canal 3-manifolds of curves generically immersed in R 4 and obtain geometrical characterizations for its singularities. We also study the geometrical properties of their corresponding parabolic surfaces, considered as surfaces immersed in R 4 .
F-singularities via alterations
2011
For a normal F-finite variety $X$ and a boundary divisor $\Delta$ we give a uniform description of an ideal which in characteristic zero yields the multiplier ideal, and in positive characteristic the test ideal of the pair $(X,\Delta)$. Our description is in terms of regular alterations over $X$, and one consequence of it is a common characterization of rational singularities (in characteristic zero) and F-rational singularities (in characteristic $p$) by the surjectivity of the trace map $\pi_* \omega_Y \to \omega_X$ for every such alteration $\pi \: Y \to X$. Furthermore, building on work of B. Bhatt, we establish up-to-finite-map versions of Grauert-Riemenscheneider and Nadel/Kawamata-V…
Geometric Singularities of Curves and Surfaces and their Stereographical Images
1998
Removable singularities for div v=f in weighted Lebesgue spaces
2018
International audience; Let $w\in L^1_{loc}(\R^n)$ be apositive weight. Assuming that a doubling condition and an $L^1$ Poincar\'e inequality on balls for the measure $w(x)dx$, as well as a growth condition on $w$, we prove that the compact subsets of $\R^n$ which are removable for the distributional divergence in $L^{\infty}_{1/w}$ are exactly those with vanishing weighted Hausdorff measure. We also give such a characterization for $L^p_{1/w}$, $1<p<+\infty$, in terms of capacity. This generalizes results due to Phuc and Torres, Silhavy and the first author.
Hybrid WENO schemes for polydisperse sedimentation models
2015
International audience; Polydisperse sedimentation models can be described by a strongly coupled system of conservation laws for the concentration of each species of solids. Typical solutions for the sedimentation model considered for batch settling in a column include stationary kinematic shocks separating layers of sediment of different composition. This phenomenon, known as segregation of species, is a specially demanding task for numerical simulation due to the need of accurate numerical simulations. Very high-order accurate solutions can be constructed by incorporating characteristic information, available due to the hyperbolicity analysis made in Donat and Mulet [A secular equation fo…
A note on Sobolev isometric immersions below W2,2 regularity
2017
Abstract This paper aims to investigate the Hessian of second order Sobolev isometric immersions below the natural W 2 , 2 setting. We show that the Hessian of each coordinate function of a W 2 , p , p 2 , isometric immersion satisfies a low rank property in the almost everywhere sense, in particular, its Gaussian curvature vanishes almost everywhere. Meanwhile, we provide an example of a W 2 , p , p 2 , isometric immersion from a bounded domain of R 2 into R 3 that has multiple singularities.
Caustics for spherical waves
2016
We study the development of caustics in shift-symmetric scalar field theories by focusing on simple waves with an $SO(p)$-symmetry in an arbitrary number of space dimensions. We show that the pure Galileon, the DBI-Galileon, and the extreme-relativistic Galileon naturally emerge as the unique set of caustic-free theories, highlighting a link between the caustic-free condition for simple $SO(p)$-waves and the existence of either a global Galilean symmetry or a global (extreme-)relativistic Galilean symmetry.
Amplitudes from superconformal Ward identities
2018
We consider finite superamplitudes of N=1 matter, and use superconformal symmetry to derive powerful first-order differential equations for them. Due to on-shell collinear singularities, the Ward identities have an anomaly, which is obtained from lower-loop information. We show that in the five-particle case, the solution to the equations is uniquely fixed by the expected analytic behavior. We apply the method to a non-planar two-loop five-particle integral.
Palatini actions and quantum gravity phenomenology
2011
We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmol…
A construction of Frobenius manifolds from stability conditions
2018
A finite quiver $Q$ without loops or 2-cycles defines a 3CY triangulated category $D(Q)$ and a finite heart $A(Q)$. We show that if $Q$ satisfies some (strong) conditions then the space of stability conditions $Stab(A(Q))$ supported on this heart admits a natural family of semisimple Frobenius manifold structures, constructed using the invariants counting semistable objects in $D(Q)$. In the case of $A_n$ evaluating the family at a special point we recover a branch of the Saito Frobenius structure of the $A_n$ singularity $y^2 = x^{n+1}$. We give examples where applying the construction to each mutation of $Q$ and evaluating the families at a special point yields a different branch of the m…