Search results for "sodium dodecyl sulfate"
showing 10 items of 146 documents
Characterization of the trimeric, self-recognizing Geodia cydonium lectin I.
1983
A D-galactose-specific lectin I was extracted from the sponge Geodia cydonium and purified by affinity chromatography. The molecular weight of lectin I as determined by high-pressure liquid gel chromatography, was found to be 36500 +/- 1300. Disc gel electrophoresis in the presence and in the absence of sodium dodecyl sulfate showed that lectin I is a trimer composed of three different subunits (Mr: 13800, 13000 and 12200); two of the three subunits are linked by one disulfide bond. Isoelectric focusing gave a pI of 5.6 for the native molecule and a pI of 4.4 and of 7.4 for the subunits. The three subunits carry carbohydrate side chains, composed of D-galactose (94%) and of arabinose (5%). …
Influence of lipid physical state on the in vitro digestibility of emulsified lipids.
2008
The objective of this study was to investigate the influence of the physical state of emulsified lipids on their in vitro digestibility by pancreatic lipase. A 10 wt % tripalmitin oil-in-water emulsion stabilized by sodium dodecyl sulfate (0.9 wt % SDS) was prepared at a temperature (>70 degrees C) above the melting point of the lipid phase (T(m) approximately 60 degrees C). A portion of this emulsion was cooled to a temperature (0 degrees C for 15 min) well below the crystallization temperature of the emulsified lipid (T(c) approximately 22 degrees C) and then warmed to 37 degrees C so as to have completely solid lipid particles. Another portion of the emulsion was directly cooled from 70 …
Impact of uncharged and charged stabilizers on in vitro drug performances of clarithromycin nanocrystals
2018
The purpose of this study was to evaluate the effect of charge on the in vitro drug performances of clarithromycin nanocrystals. To prepare different charges of nanocrystals, media milling was employed with the use of different stabilizing systems. The uncharged nanocrystals were prepared from poloxamer 407. The negatively and positively charged nanocrystals were stabilized using a combination of poloxamer 407 with sodium lauryl sulfate (SLS) and cetyltrimethylammonium bromide (CTAB), respectively. After production, the particle size of the negatively and positively charged nanocrystals was smaller than that of the uncharged one. The similar particle size of variously charged clarithromycin…
Inhibition of the precipitation of barium salts in sodium dodecyl sulfate/0.1 M HCl/n-pentanol microemulsions and liquid crystals
1989
Abstract The phase ternary diagram of the sodium dodecyl sulfate (SDS)/0.1 M HCl/n-pentanol system is studied. Three monophase regions were observed: water rich and n-pentanol rich microemulsions, and a liquid crystal. These media have a strong ability to control the rate of crystal growth of barium sulfate and barium dodecyl sulfate, the precipitation being totally inhibited in the liquid crystal region.
Chlorophyll-Protein Complexes of Chlorella fusca
1980
Chlorophyll-protein complexes from thylakoids of the normal type and two mutants of Chlorella fusca were separated using sodium dodecyl sulfate acrylamide gel electrophoresis (PAGE). The properties of the chlorophyll-protein complexes of the three strains of Chlorella were compared. Standard curves were set up for the characterization of the chlorophyll-proteins. In every electrophoretic separation of chlorophyll-protein complexes, a certain amount of pigment is separated from the protein. We tried to keep that amount as low as possible by mild solubilization and by working in low temperature. Under these conditions, we obtained several new chlorophyll-proteins in addition to the P-700-chl…
The Folding State of the Lumenal Loop Determines the Thermal Stability of Light-Harvesting Chlorophyll a/b Protein
2004
The major light-harvesting protein of photosystem II (LHCIIb) is the most abundant chlorophyll-binding protein in the thylakoid membrane. It contains three membrane-spanning alpha helices; the first and third one closely interact with each other to form a super helix, and all three helices bind most of the pigment cofactors. The protein loop domains connecting the alpha helices also play an important role in stabilizing the LHCIIb structure. Single amino acid exchanges in either loop were found to be sufficient to significantly destabilize the complex assembled in vitro [Heinemann, B., and Paulsen, H. (1999) Biochemistry 38, 14088-14093. Mick, V., Eggert, K., Heinemann, B., Geister, S., and…
The Light-Harvesting Chlorophyll a/b Complex Can Be Reconstituted in Vitro from Its Completely Unfolded Apoprotein
2003
The major light-harvesting chlorophyll a/b protein (LHCIIb) of higher plants is one of the few membrane proteins that can be refolded in vitro. During folding, the apoprotein is assembled with pigments to form a structurally authentic and functional pigment--protein complex. All reconstitution procedures used so far include solubilization of the apoprotein in sodium dodecyl sulfate (SDS) where the protein adopts approximately half of its alpha-helical folding present in the native structure. This paper shows that this preformed alpha-helix is not a prerequisite for LHCIIb folding in vitro. The apoprotein can also be reconstituted starting from a solution in guanidinium hydrochloride (Gnd) w…
Performance of short-chain alcohols versus acetonitrile in the surfactant-mediated reversed-phase liquid chromatographic separation of β-blockers
2010
Organic solvents are traditionally added to micellar mobile phases to achieve adequate retention times and peak profiles, in a chromatographic mode which has been called micellar liquid chromatography (MLC). The organic solvent content is limited to preserve the formation of micelles. However, at increasing organic solvent contents, the transition to a situation where micelles do not exist is gradual. Also, there is no reason to neglect the potentiality of mobile phases containing only surfactant monomers instead of micelles (high submicellar chromatography, HSC). This is demonstrated here for the analysis of β-blockers. The performance of four organic solvents (methanol, ethanol, 1-propano…
Comparison of surfactant-mediated liquid chromatographic modes with sodium dodecyl sulphate for the analysis of basic drugs
2020
In reversed-phase liquid chromatography (RPLC), basic drugs are positively charged at the usual working pH range and interact with free anionic silanols present in conventional silica-based stationary phases. This translates into stronger retention and tailed and broadened peaks. This problem can be resolved by the addition of reagents to the mobile phase that are adsorbed on the stationary phase, avoiding the access of solutes to silanols. Among these additives, surfactants under micellar conditions have provided good silanol suppressing potency through the technique known as micellar liquid chromatography (MLC). The most common example of this is anionic sodium dodecyl sulphate (SDS). Whe…
Retention mechanisms for basic drugs in the submicellar and micellar reversed-phase liquid chromatographic modes.
2008
The reversed-phase liquid chromatographic (RPLC) behavior (retention, elution strength, selectivity, efficiency, and peak asymmetry) for a group of basic drugs (beta-blockers), with mobile phases containing the anionic surfactant sodium dodecyl sulfate (SDS) and acetonitrile, revealed different separation environments, depending on the concentrations of both modifiers: hydro-organic, submicellar at low surfactant concentration and high concentration of organic solvent, micellar, and submicellar at high concentration of both surfactant and organic solvent. In the surfactant-mediated modes, the anionic surfactant layer adsorbed on the stationary phase interacts strongly with the positively ch…