Search results for "solar wind"

showing 10 items of 30 documents

First light observations of the solar wind in the outer corona with the Metis coronagraph

2021

In this work, we present an investigation of the wind in the solar corona that has been initiated by observations of the resonantly scattered ultraviolet emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying Doppler dimming diagnostics. Metis on Solar Orbiter complements the UVCS spectroscopic observations that were performed during solar activity cycle 23 by simultaneously imaging the polarized visible light and the H I Lyman-α corona in order to obtain high spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, taken on May 15, 2020, provide the first H I …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaSolar windFOS: Physical sciencesAstrophysics01 natural sciencesWind speedlaw.inventionsymbols.namesakeSun: corona – solar wind – Sun: UV radiationlaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsCoronagraphSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Sun: coronaAstronomy and AstrophysicsPlasmaSolar wind Sun: corona Sun: UV radiationSun: UV radiationCoronaSolar windAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceTemporal resolutionPhysics::Space PhysicssymbolsOutflowDoppler effect
researchProduct

Origin and Ion Charge State Evolution of Solar Wind Transients during 4 – 7 August 2011

2016

We present study of the complex event consisting of several solar wind transients detected by Advanced Composition Explorer (ACE) on 4 -- 7 August 2011, that caused a geomagnetic storm with Dst$=-$110 nT. The supposed coronal sources -- three flares and coronal mass ejections (CMEs) occurred on 2 -- 4 August 2011 in the active region (AR) 11261. To investigate the solar origin and formation of these transients we studied kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and the differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic fie…

010504 meteorology & atmospheric sciencesMHDSolar windAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysics01 natural sciencesPhysics - Space PhysicsModelsIonization0103 physical sciencesCoronal mass ejectionQB AstronomyAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesGeomagnetic stormPhysicsAstronomy and Astrophysics3rd-DASPlasmaCoronaSpace Physics (physics.space-ph)Solar windQC PhysicsMagnetic field13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsCoronal mass ejectionsMagnetohydrodynamicsSolar Physics
researchProduct

Innovative technical implementation of the Schumann resonances and its influence on organisms and biological cells

2019

Over the course of time in the digital age, oscillating processes were utilized in various realizations. Life without these became hardly imaginable. Schumann resonances are electromagnetical resonances or eigenfrequencies (radio waves), which originate from the oscillation in a hollow space shell. Their average basic frequency is 7,83Hz. The above-mentioned radio waves emerge from energy discharges such as thunderstorms, lightning or solar wind within the earth's surface and the ionosphere. They exist around the globe. Various scientists have discovered a correlation to our health on the basis of studies and experiments; their absence can result in a variety of disorders from headaches to …

010504 meteorology & atmospheric sciencesSchumann resonancesComputer scienceGeophysics01 natural sciencesLightningField (geography)03 medical and health sciencesSolar wind0302 clinical medicine030220 oncology & carcinogenesisThunderstormIonosphere0105 earth and related environmental sciencesRadio waveIOP Conference Series: Materials Science and Engineering
researchProduct

Models and data analysis tools for the Solar Orbiter mission

2020

All authors: Rouillard, A. P.; Pinto, R. F.; Vourlidas, A.; De Groof, A.; Thompson, W. T.; Bemporad, A.; Dolei, S.; Indurain, M.; Buchlin, E.; Sasso, C.; Spadaro, D.; Dalmasse, K.; Hirzberger, J.; Zouganelis, I.; Strugarek, A.; Brun, A. S.; Alexandre, M.; Berghmans, D.; Raouafi, N. E.; Wiegelmann, T.; Pagano, P.; Arge, C. N.; Nieves-Chinchilla, T.; Lavarra, M.; Poirier, N.; Amari, T.; Aran, A.; Andretta, V.; Antonucci, E.; Anastasiadis, A.; Auchère, F.; Bellot Rubio, L.; Nicula, B.; Bonnin, X.; Bouchemit, M.; Budnik, E.; Caminade, S.; Cecconi, B.; Carlyle, J.; Cernuda, I.; Davila, J. M.; Etesi, L.; Espinosa Lara, F.; Fedorov, A.; Fineschi, S.; Fludra, A.; Génot, V.; Georgoulis, M. K.; Gilbe…

010504 meteorology & atmospheric sciencescorona [Sun]Solar windAstrophysics[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph]7. Clean energy01 natural scienceslaw.inventionData acquisitionlawCoronal mass ejectiongeneral [Sun]QB AstronomyAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSun: magnetic fieldsQCComputingMilieux_MISCELLANEOUSQBPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]3rd-DASenergetic particlesSolar windCORONAL MASS EJECTIONSnumerical modelingmagnetic fields [Sun]solar windPhysics::Space PhysicsSystems engineeringAstrophysics::Earth and Planetary Astrophysicsatmosphere [Sun]fundamental parameters [Sun]Sun: generalFORCE-FREE FIELDSun: fundamental parametersSolar radiusContext (language use)STREAMER STRUCTUREOrbiter0103 physical sciencesOPTIMIZATION APPROACH[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]POLARIZATION MEASUREMENTSSun: Solar wind3-DIMENSIONAL STRUCTURE0105 earth and related environmental sciencesSpacecraftbusiness.industrySun: corona[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]solar coronaMAGNETIC-FLUX ROPESAstronomy and AstrophysicsSHOCKS DRIVEN115 Astronomy Space scienceSPECTRAL-LINESQC Physics13. Climate actionSpace and Planetary SciencebusinessHeliosphereSun: atmosphereELECTRON-DENSITY
researchProduct

Reconstruction of the Parker spiral with the Reverse in situ data and MHD APproach - RIMAP

2021

The reconstruction of plasma parameters in the interplanetary medium is very important to understand the interplanetary propagation of solar eruptions and for Space Weather application purposes. Because only a few spacecraft are measuring in situ these parameters, reconstructions are currently performed by running complex numerical Magneto-hydrodynamic (MHD) simulations starting from remote sensing observations of the Sun. Current models apply full 3D MHD simulations of the corona or extrapolations of photospheric magnetic fields combined with semi-empirical relationships to derive the plasma parameters on a sphere centered on the Sun (inner boundary). The plasma is then propagated in the i…

Atmospheric Science010504 meteorology & atmospheric sciencesSpace weatherSolar windInterplanetary mediumSpace weatherlcsh:QC851-99901 natural sciencesHeliosphere0103 physical sciencesCoronal mass ejectionAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsModelingCoronal mass ejections; Heliosphere; Interplanetary medium; Modeling; Solar wind; Space weatherComputational physicsSolar windSpace and Planetary SciencePhysics::Space PhysicsCoronal mass ejectionslcsh:Meteorology. ClimatologyHeliospheric current sheetAstrophysics::Earth and Planetary AstrophysicsMagnetohydrodynamicsInterplanetary spaceflightHeliosphereInterplanetary medium
researchProduct

Intermittent release of transients in the slow solar wind: 1. Remote sensing observations

2010

[1] The Heliospheric Imager (HI) instruments on board the STEREO spacecraft are used to analyze the solar wind during August and September 2007. We show how HI can be used to image the streamer belt and, in particular, the variability of the slow solar wind which originates inside and in the vicinity of the streamer belt. Intermittent mass flows are observed in HI difference images, streaming out along the extension of helmet streamers. These flows can appear very differently in images: plasma distributed on twisted flux ropes, V-shaped structures, or “blobs.” The variety of these transient features may highlight the richness of phenomena that could occur near helmet streamers: emergence of…

Atmospheric ScienceAstrophysics::High Energy Astrophysical PhenomenaSoil ScienceFluxInterplanetary mediumAquatic ScienceOceanographyPhysics::Plasma PhysicsGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Astrophysics::Solar and Stellar AstrophysicsInterplanetary magnetic fieldEjectaEarth-Surface ProcessesWater Science and TechnologyPhysicsEcologyPaleontologyAstronomyForestryHelmet streamerCoronaSolar windGeophysicsSpace and Planetary SciencePhysics::Space PhysicsOutflowAstrophysics::Earth and Planetary AstrophysicsJournal of Geophysical Research: Space Physics
researchProduct

A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft

2009

The suite of SECCHI optical imaging instruments on the STEREO-A spacecraft is used to track a solar storm, consisting of several coronal mass ejections (CMEs) and other coronal loops, as it propagates from the Sun into the heliosphere during May 2007. The 3-D propagation path of the largest interplanetary CME (ICME) is determined from the observations made by the SECCHI Heliospheric Imager (HI) on STEREO-A (HI-1/2A). Two parts of the CME are tracked through the SECCHI images, a bright loop and a V-shaped feature located at the rear of the event. We show that these two structures could be the result of line-of-sight integration of the light scattered by electrons located on a single flux rop…

Atmospheric ScienceSoil ScienceInterplanetary mediumVenusAquatic ScienceSpace weatherOceanographyGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Coronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsEarth-Surface ProcessesWater Science and TechnologyPhysicsEcologybiologyPaleontologyAstronomyForestryCoronal loopbiology.organism_classificationSolar windGeophysicsSpace and Planetary SciencePhysics::Space PhysicsInterplanetary spaceflightHeliosphereJournal of Geophysical Research: Space Physics
researchProduct

ESTCube-1 in-orbit experience and lessons learned

2015

ESTCube-1 is a student satellite project lead by the University of Tartu, Estonia, and supported by the European Space Agency (ESA) via Plan for European Cooperating States (PECS). Development of ESTCube-1 has been a collaborative effort with many international partners. The satellite is shown on Figure 1 [1].

Engineeringta115ta213business.industrynanosatelliteCubeSatE-sailAerospace EngineeringPlan (drawing)satellite designelectric solar wind sailsatellitesESTCube-1AeronauticsSpace and Planetary ScienceAgency (sociology)Space techniquesSatelliteElectrical and Electronic EngineeringOrbit (control theory)Aerospace engineeringelectric solar wind sailsbusinessSpace researchIEEE Aerospace and Electronic Systems Magazine
researchProduct

Solar and interplanetary triggers of the largest Dst variations of the solar cycle 23

2012

Abstract We present the results of an investigation from the Sun to the Earth of the sequence of events that caused major Dst decreases (Δ Dst ≤ – 100 nT during 1 h) that occurred during 1996–2005. These events are expected to be better related to geomagnetic induced current (GIC) events than those events where any geomagnetic index is far from its quiet time value. At least one full halo CME with a speed on the plane of sky above 900 km/s participates in every studied event. The seven events were triggered by interplanetary signatures, which arise as a consequence of interaction among different solar ejections. The interaction arises at different stages from the solar surface, between segm…

Geomagnetic stormPhysicsAtmospheric ScienceIonospheric dynamo regionInterplanetary mediumAstronomySolar physicsSolar windGeophysicsEarth's magnetic fieldSpace and Planetary SciencePhysics::Space PhysicsCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsInterplanetary spaceflightJournal of Atmospheric and Solar-Terrestrial Physics
researchProduct

Linking Small-scale Solar Wind Properties with Large-scale Coronal Source Regions through Joint Parker Solar Probe–Metis/Solar Orbiter Observations

2022

Abstract The solar wind measured in situ by Parker Solar Probe in the very inner heliosphere is studied in combination with the remote-sensing observation of the coronal source region provided by the METIS coronagraph aboard Solar Orbiter. The coronal outflows observed near the ecliptic by Metis on 2021 January 17 at 16:30 UT, between 3.5 and 6.3 R ⊙ above the eastern solar limb, can be associated with the streams sampled by PSP at 0.11 and 0.26 au from the Sun, in two time intervals almost 5 days apart. The two plasma flows come from two distinct source regions, characterized by different magnetic field polarity and intensity at the coronal base. It follows that both the global and local p…

Magnetohydrodynamics (694)Settore FIS/05 - Astronomia E AstrofisicaAstronomi astrofysik och kosmologiSpace and Planetary ScienceSolar corona (1483)Space plasmas (1544)Solar wind (1534)Interplanetary turbulence (830)Astronomy Astrophysics and CosmologyAstronomy and AstrophysicsAlfven waves (23)Heliosphere (711)
researchProduct