Search results for "space charge"
showing 10 items of 97 documents
Space charge and induced dipole relaxation in solid electrolytes
1996
The space charge relaxation and induced dipole relaxation in solid electrolytes is discussed. The di-electric responses of these relaxations gives a satisfactory fit to the universal conductivity behaviours in the frequency range from DC to infrared.
Space-charge relaxation in perovskites.
1994
We report a dielectric anomaly in several perovskites at intermediate frequencies 10\ensuremath{\le}f\ensuremath{\le}${10}^{7}$ Hz in the temperature range 400 \ifmmode^\circ\else\textdegree\fi{}C \ensuremath{\le}T\ensuremath{\le}800 \ifmmode^\circ\else\textdegree\fi{}C. We have found this dielectric maximum in more than 100 samples of various shapes and textures. This anomaly is shown to arise from a Debye dielectric dispersion that slows down following an Arrhenius law. We have established a link between this dielectric relaxation and the conductivity. We propose that it can be achieved through a space-charge model that quantitatively agrees with the experimental results in the lower temp…
Gibbs' Dividing Surface between a Fixed-Charge Membrane and an Electrolyte Solution. Application to Electrokinetic Phenomena in Charged Pores
1999
The Gibbs model for the boundary between two phases consists of replacing the finite interfacial region, where the properties of the system change gradually, by a dividing surface which acts as a third phase of zero volume in which some magnitudes change abruptly. This thermodynamic concept was recently applied to a planar interface between a fixed charge membrane and an electrolyte solution.1 The continuous decrease of counterions with the distance from the charged surface is replaced by a step function, so that the diffuse double layer is ideally represented by a charged region depleted of all co-ions. Here the cylindrical geometry is analyzed, and the planar case is revisited by proposin…
Drift Modeling of Electrically Controlled Nanoscale Metal–Oxide Gas Sensors
2008
Gas sensors with small dimensions offer the advantage of electrical sensitivity modulation. However, their actual use is hindered by drift effects that exceed those of usual metal-oxide sensors. We analyzed possible causes and found the best agreement of experimental data with the model of internal dopant fluctuations. The dopants are oxygen vacancies exhibiting high drift-diffusion coefficients under the impact of electrical fields. Thus, the width parameters of space charge regions, which again control the sensor current, are undergoing slow changes. Moreover, the dopant distributions cause internal electrical fields that yield drift even after voltage switch-off. This behavior has been p…
Investigation of Space-Charge Phenomena in Gas-Filled Penning Traps
2009
The centering of ions in Penning traps by a quadrupolar radiofrequency excitation in the presence of a buffer gas has been studied in the regime of high charge‐densities. It is found to deviate significantly from the single‐particle situation. In particular, the efficiency of the cooling process is affected as well as the resolving power. The behavior has been studied experimentally at the preparation trap REXTRAP and the high‐precision Penning trap setup ISOLTRAP both located at the on‐line mass separator ISOLDE at CERN. In addition, the phenomenon has been investigated numerically by a custom‐designed simulation.
Dielectric relaxation and conductivity in ferroelectric perovskites
1996
Abstract Ferroelectric ABO3 perovskites are usually well known for their high dielectric susceptibility. Under selected impurity substitutions their conductivity may be strongly increased. The interaction between electronic conductivity and lattice polarizability may take place over different length scales. At high temperatures (T > 300 K), this interaction length is macroscopic leading to space charges. At low temperatures (T < 50 K), the polaronic interaction is restricted to a few unit cells. In the special case of SrTiO3, these polaronic excitons are sensitive to the quantum fluctuations which lead to the new concept of quantum polarons.
Effects of water dielectric saturation on the space–charge junction of a fixed-charge bipolar membrane
2000
Abstract The dielectric saturation at the space–charge junction of a fixed-charge bipolar membrane is studied using the theoretical approach by Booth for the water dielectric constant and the Poisson equation for the electrical double layer at the junction. The numerical solution gives the electric field and dielectric constant profiles through the junction as well as the junction thickness as a function of the voltage drop. The water dielectric constant decreases substantially for the large electric fields that may occur at the narrow bipolar junction.
Study of the pyroelectricity in LiIns2 crystal
2002
Abstract Pyroelectric current measurements performed on a LiInS2 monodomain single crystal show a linear variation of the current between 120 and 260 K. Near room temperature, a space charge relaxation screens pyroelectricity. The pyroelectric coefficient follows a linear thermal dependence leading to an extrapolated value of 6×10−10 C K−1 cm−2 at 300 K. As for other oxide-type pyroelectric compounds, this value is shown to be proportional to the electro-optic coefficient r333 of LiInS2.
Thickness scaling of space-charge-limited currents in organic layers with field- or density-dependent mobility
2006
An exact solution is provided for the current density-voltage (J –V) characteristics of space-charge limited transport of a single carrier in organic layers with field-dependent mobility of the type μ (E) = μ0 exp (γ √E. The general scaling relationship for field-dependent mobility occurs in terms of the variables JL and V /L. For the density-dependence of the mobility found in organic field-effect transistor measurements, the thickness scaling occurs in terms of different variables, J1/βL and V /L. The proposed scaling is a useful test for distinguishing field- and carrier density-dependent mobility in disordered organic semiconductors. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
The effect of the axial heat transfer on space charge accumulation phenomena in HVDC cables
2020
To date, it has been widespread accepted that the presence of space charge within the dielectric of high voltage direct current (HVDC) cables is one of the most relevant issues that limits the growing diffusion of this technology and its use at higher voltages. One of the reasons that leads to the establishment of space charge within the insulation of cables is the temperature dependence of its conductivity. Many researchers have demonstrated that high temperature drop over the insulation layer can lead to the reversal of the electric field profile. In certain conditions, this can over-stress the insulation during polarity reversal (PR) and transient over voltages (TOV) events accelerating …