Search results for "spektroskopia"

showing 10 items of 196 documents

Total absorption γ -ray spectroscopy of niobium isomers

2019

15 pags. 17 figs., 5 tabs.

spektroskopiaNiobiumchemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Structure7. Clean energy01 natural sciences0103 physical sciencesDecay heat010306 general physicsSpectroscopyAbsorption (electromagnetic radiation)Nuclear ExperimentPhysicsZirconiumSpectrometer010308 nuclear & particles physicsPandemonium effectPenning trapnuclear structure and decayschemistry13. Climate actionFísica nuclearbeta decayAtomic physicsisomer decaysydinfysiikka
researchProduct

Tin resonance-ionization schemes for atomic- And nuclear-structure studies

2020

This paper presents high-precision spectroscopic measurements of atomic tin using five different resonance-ionization schemes performed with the collinear resonance-ionization spectroscopy technique. Isotope shifts were measured for the stable tin isotopes from the $5{s}^{2}5{p}^{2}\phantom{\rule{0.28em}{0ex}}^{3}{P}_{0,1,2}$ and ${}^{1}{S}_{0}$ to the $5{s}^{2}5p6s\phantom{\rule{0.28em}{0ex}}^{1}{P}_{1},^{3}{P}_{1,2}$ and $5{s}^{2}5p7s{\phantom{\rule{0.28em}{0ex}}}^{1}{P}_{1}$ atomic levels. The magnetic dipole hyperfine constants ${A}_{\mathrm{hf}}$ have been extracted for six atomic levels with electron angular momentum $Jg0$ from the hyperfine structures of nuclear spin $I=1/2$ tin isot…

spektroskopiachemistry.chemical_elementPhysics Atomic Molecular & Chemical7. Clean energy01 natural sciences010305 fluids & plasmasatomifysiikkaAtomic theory0103 physical sciencesIsotopes of tinNuclear Physics - ExperimentPhysics::Atomic Physics010306 general physicsSpectroscopyHyperfine structurePhysicsisotoopitScience & TechnologyPhysicsNuclear structureCharge (physics)OpticsConfiguration interactionchemistryPhysical SciencestinaAtomic physicsTinPhysical Review A
researchProduct

Spectroscopy of short-lived radioactive molecules

2020

Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1–4. Radioactive molecules—in which one or more of the atoms possesses a radioactive nucleus—can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7–9 in molecu…

spektroskopiacollinearnucl-ex01 natural sciences010305 fluids & plasmasRadiumchemistry.chemical_compoundIonizationExperimental nuclear physicsNuclear ExperimentPhysicsMultidisciplinaryLarge Hadron ColliderStable isotope rationew physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]hep-thmolekyylithep-phradiumelectron: electric momentNuclear Physics - Theoryradioactivitymany-body problemElectronic structure of atoms and moleculesAtomic physicsydinfysiikkaParticle Physics - Theoryexceptionalnucl-th[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]MonofluorideResearchInstitutes_Networks_Beacons/photon_science_institutechemistry.chemical_elementnucleus: structure functionElectronic structure[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Photon Science InstituteArticle0103 physical sciencesionizationMoleculeNuclear Physics - Experiment010306 general physicsSpectroscopyenhancementParticle Physics - Phenomenologystabilitysensitivitylaserchemistry[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Exotic atoms and moleculesnucleus: deformation
researchProduct

Microfluidics for the spectroscopy of carbon nanotubes

2013

We have successfully finalized the process of creating small microfluidic channels on glass chips, having 4 inlet/outlet holes for liquid flow. The fabricated channel structures can be as complex as electron beam lithography can make them. Working channels have the minimum width and depth of 4 µm x 4 µm. The microfluidics is controlled with Fluigent MFCS, enabling pressures up to 345 mbar. Liquid flow rates range from 40 pl/s up to 1.2 nl/s. Objects in such small channels still run with channel speeds of tens of micrometers or even millimeters per second. With a T-junction structure, droplets of water/oil can be formed and controlled. The system is coupled with a Raman microscope, enabling …

spektroskopiafysiikkananoputketmikrokanava
researchProduct

Tuning protein adsorption on graphene surfaces via laser-induced oxidation

2021

An approach for controlled protein immobilization on laser-induced two-photon (2P) oxidation patterned graphene oxide (GO) surfaces is described. Selected proteins, horseradish peroxidase (HRP) and biotinylated bovine serum albumin (b-BSA) were successfully immobilized on oxidized graphene surfaces, via non-covalent interactions, by immersion of graphene-coated microchips in the protein solution. The effects of laser pulse energy, irradiation time, protein concentration and duration of incubation on the topography of immobilized proteins and consequent defects upon the lattice of graphene were systemically studied by atomic force microscopy (AFM) and Raman spectroscopy. AFM and fluorescence…

spektroskopiagrafeenihapettuminenproteiinitatomivoimamikroskopialasertekniikkamikrosirutfluoresenssimikroskopia
researchProduct

In-beam γ-ray spectroscopy of 94Ag

2023

A recoil-beta-tagging experiment has been per formed to study the excited T = 0 and T = 1 states in the odd–odd N = Z nucleus 94Ag, populated via the 40Ca(58Ni,1p3n)94Ag reaction. The experiment was con ducted using the MARA recoil separator and JUROGAM3 array at the Accelerator Laboratory of the University of Jyväskylä. Through correlating fast, high-energy beta decays at the MARA focal plane with prompt γ rays emitted at the reaction target, a number of transitions between excited states in 94Ag have been identified. The timing characteris tics of these transitions confirm that they fall within decay sequences that feed the short-lived T = 1 ground state of 94Ag. The transitions are propo…

spektroskopiahopeaydinfysiikka
researchProduct

Spectroscopy of 161Hf from low to high spin

2014

Excited states in the neutron-deficient nucleus 161 72Hf89 have been populated using the 118Sn(48Ti,5n) 161Hf and 110Pd(56Fe,5n) 161Hf fusion-evaporation reactions at 240 and 270 MeV, respectively. The level scheme for 161Hf has been extended with the observation of new band structures and an I π = (13/2+) isomeric state with a half-life of 4.8(2) μs has been identified. The decay path from this isomer to the (7/2−) ground state is established. The yrast band, based on the (13/2+) isomeric state, is extended up to (73/2+) and side band structures are identified up to (69/2−) and (55/2−). Quasiparticle assignments for these rotational structures are made on the basis of their alignment prope…

spektroskopianeutron-deficient nuclei
researchProduct

Spectroscopy of 193Bi

2014

spektroskopiashape coexistence
researchProduct

The NUMEN project @ LNS : Status and perspectives

2019

The NUMEN project aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0υββ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. Particular interest is given to the (18O,18Ne) and (20Ne,20O) reactions as tools for β+ β+ and β−β− decays, respectively. First evidence about the possibility to get quantitative information about NME from experiments is found for both kind of reactions. In the experiments, performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania, the beams are accelerated by the Superconducting Cyclotron (CS) …

spektroskopiaydinfysiikka
researchProduct

Decay spectroscopy of 171,172Os and 171,172,174Ir

2023

We report on a study of the α-decay fine structure and the associated Eα−Eγ correlations in the decays of 171,172Os and 171,172,174Ir. In total, 13 new α-decay energy lines have been resolved, and three new γ-ray transitions have been observed following the new decay branches to 168Re and 167W. The weak α-decay branch from the bandhead of the νi13/2 band in 171Os observed in this work highlights an unusual competition between α, β, and electromagnetic decays from this isomeric state. The nucleus 171Os is therefore one of few nuclei observed to exhibit three different decay modes from the same excited state. The nuclei of interest were produced in 92Mo(83Kr,xpyn) fusion-evaporation reactions…

spektroskopiaydinfysiikka
researchProduct