Search results for "sphere"
showing 10 items of 2121 documents
Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD
2016
Societal upheaval occurred across Eurasia in the sixth and seventh centuries. Tree-ring reconstructions suggest a period of pronounced cooling during this time associated with several volcanic eruptions. Climatic changes during the first half of the Common Era have been suggested to play a role in societal reorganizations in Europe1,2 and Asia3,4. In particular, the sixth century coincides with rising and falling civilizations1,2,3,4,5,6, pandemics7,8, human migration and political turmoil8,9,10,11,12,13. Our understanding of the magnitude and spatial extent as well as the possible causes and concurrences of climate change during this period is, however, still limited. Here we use tree-ring…
Carbon-isotope records of the Early Jurassic (Toarcian) Oceanix Anixic Event from the Valdorbia (Umbria-Marche Apennines) and Monte Mangart (Julian A…
2009
The Toarcian oceanic anoxic event (ca 183 Ma) coincides with a global perturbation marked by enhanced organic carbon burial and a general decrease in calcium carbonate production, probably triggered by changes in the composition of marine plankton and elevated carbon dioxide levels in the atmosphere. This study is based on high-resolution sampling of two stratigraphic successions, located in Valdorbia (Umbria-Marche Apennines) and Monte Mangart (Julian Alps), Italy, which represent expressions of the Toarcian oceanic anoxic event in deep-water pelagic sediments. These successions are characterized by the occurrence of black shales showing relatively low total organic carbon concentrations (…
Applicability and consequences of the integration of alternative models for CO<sub>2</sub> transfer velocity into a process-based lake mo…
2019
Abstract. Freshwater lakes are important in carbon cycling, especially in the boreal zone where many lakes are supersaturated with the greenhouse gas carbon dioxide (CO2) and emit it to the atmosphere, thus ventilating carbon originally fixed by the terrestrial system. The exchange of CO2 between water and the atmosphere is commonly estimated using simple wind-based parameterizations or models of gas transfer velocity (k). More complex surface renewal models, however, have been shown to yield more correct estimates of k in comparison with direct CO2 flux measurements. We incorporated four gas exchange models with different complexity into a vertical process-based physico-biochemical lake mo…
Summarizing the state of the terrestrial biosphere in few dimensions
2020
Abstract. In times of global change, we must closely monitor the state of the planet in order to understand the full complexity of these changes. In fact, each of the Earth's subsystems – i.e., the biosphere, atmosphere, hydrosphere, and cryosphere – can be analyzed from a multitude of data streams. However, since it is very hard to jointly interpret multiple monitoring data streams in parallel, one often aims for some summarizing indicator. Climate indices, for example, summarize the state of atmospheric circulation in a region. Although such approaches are also used in other fields of science, they are rarely used to describe land surface dynamics. Here, we propose a robust method to crea…
Understanding the uncertainty in global forest carbon turnover
2020
Abstract. The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models used for global assessments tend to fall back on simplified assumptions of the turnover rates of biomass and soil carbon pools. In this study, the biomass carbon turnover times calculated by an ensemble of contemporary terrestrial biosphere models (TBMs) are analysed to assess their current capability to accurately estimate biomass carbon turnover times in forests and how these times a…
The responses of shoot-root-rhizosphere continuum to simultaneous fertilizer addition, warming, ozone and herbivory in young Scots pine seedlings in …
2017
Abstract It is not clear how climate change in combination with increasing soil nitrogen availability and herbivory affects boreal forests, the largest terrestrial biome in the world. In this study, Scots pine ( Pinus sylvestris ) seedlings were exposed to moderate warming (ca. 1 °C), 1.5 × ambient ozone (O 3 ) concentration, fertilizer addition (120 kg N ha −1 yr −1 ) and shoot herbivory by pine sawfly ( Acantholyda posticalis ) alone and in combination. We measured fine root morphology, mycorrhizal colonization level, root fungal biomass (ergosterol), rhizosphere emission of biogenic volatile organic compounds (BVOCs), and microbial biomass (PLFAs) in the rhizosphere soil as well as seedl…
Warming in the Agulhas Current system since the 1980's
2009
International audience; Since the 1980's, the sea surface temperature of the Agulhas Current system has increased significantly. The warming is due to an augmentation of its transport in response to an increase in wind stress curl in the South Indian Ocean at relevant latitudes. This causes an increase in the fluxes of salt and heat into the Atlantic Ocean and in the transfer of energy from the ocean to the atmosphere. Therefore, the changes we are witnessing in the region could have far reaching consequences on top of the regional impacts on ecosystem and climate. The increase in wind stress curl is consistent with a poleward shift of westerly wind in the Southern Hemisphere reported by ot…
Diverse growth trends and climate responses across Eurasia’s boreal forest
2016
The area covered by boreal forests accounts for similar to 16% of the global and 22% of the Northern Hemisphere landmass. Changes in the productivity and functioning of this circumpolar biome not o ...
Biodiversity is not (and never has been) a bed of roses!
2011
9 pages; International audience; Over the last decades, the critical study of fossil diversity has led to significant advances in the knowledge of global macroevolutionary patterns of biodiversity. The deep-time history of life on Earth results from background originations and extinctions defining a steady-state, nonstationary equilibrium occasionally perturbed by biotic crises and "explosive" diversifications. More recently, a macroecological approach to the large-scale distribution of extant biodiversity offered new, stimulating perspectives on old theoretical questions and current practical problems in conservation biology. However, time and space are practically distinct, but functional…
Allelopathy and the role of allelochemicals in plant defence
2017
International audience; Allelopathy is described as the interference to plant growth resulting from chemical interactions among plants and other organisms mediated through release of plant-produced bioactive secondary metabolites referred to as allelochemicals. A number of mechanisms have been studied for the release of allelochemicals from various plant tissues including volatilization or leaching from aerial parts, exudation from roots and decomposition of plant residues in soil. Despite differences in biological activity and mode of action, related compounds commonly share similar biosynthetic pathways while some classes of metabolites can be produced using diverse biosynthetic pathways.…