Search results for "standard model"

showing 10 items of 1206 documents

Gauge and Yukawa unification with broken R-parity

1998

We study gauge and Yukawa coupling unification in the simplest extension of the Minimal Supersymmetric Standard Model (MSSM) which incorporates R-Parity violation through a bilinear superpotential term. Contrary to what happens in the MSSM, we show that bottom-tau unification at the scale M_GUT where the gauge couplings unify can be achieved for any value of tan(beta) by choosing appropriately the sneutrino vacuum expectation value. In addition, we show that bottom-tau-top unification occurs in a slightly wider tan(beta) range than in the MSSM.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsParticle physicsUnificationHigh Energy Physics::PhenomenologySuperpotentialYukawa potentialFOS: Physical sciencesFísicaGauge (firearms)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)R-parityHigh Energy Physics::ExperimentBeta (velocity)Vacuum expectation valueMinimal Supersymmetric Standard ModelPhysics Letters B
researchProduct

Modular invariant dynamics and fermion mass hierarchies around τ = i

2021

We discuss fermion mass hierarchies within modular invariant flavour models. We analyse the neighbourhood of the self-dual point $\tau=i$, where modular invariant theories possess a residual $Z_4$ invariance. In this region the breaking of $Z_4$ can be fully described by the spurion $\epsilon \approx \tau - i$, that flips its sign under $Z_4$. Degeneracies or vanishing eigenvalues of fermion mass matrices, forced by the $Z_4$ symmetry at $\tau=i$, are removed by slightly deviating from the self-dual point. Relevant mass ratios are controlled by powers of $|\epsilon|$. We present examples where this mechanism is a key ingredient to successfully implement an hierarchical spectrum in the lepto…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsSupersymmetric Standard Model010308 nuclear & particles physicsSpectrum (functional analysis)Compactification and String ModelsFermionQC770-798Invariant (physics)01 natural sciencesSymmetry (physics)High Energy Physics - PhenomenologyNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesBeyond Standard ModelNeutrino Physics010306 general physicsEigenvalues and eigenvectorsLeptonMinimal Supersymmetric Standard ModelMathematical physicsSign (mathematics)Journal of High Energy Physics
researchProduct

Structure Formation Limits on Axion-Like Dark Matter

2020

We derive structure formation limits on dark matter (DM) composed of keV-scale axion-like particles (ALPs), produced via freeze-in through the interactions with photons and Standard Model (SM) fermions. We employ Lyman-alpha (Ly-{\alpha}) forest data sets as well as the observed number of Milky Way (MW) subhalos. We compare results obtained using Maxwell-Boltzmann and quantum statistics for describing the SM bath. It should be emphasized that the presence of logarithmic divergences complicates the calculation of the production rate, which can not be parameterized with a simple power law behaviour. The obtained results, in combination with X-ray bounds, exclude the possibility for a photophi…

High Energy Physics - TheoryPhysicsParticle physicsStructure formationPhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsDark matterFOS: Physical sciencesAstronomy and AstrophysicsFermion01 natural sciencesStandard ModelMomentumHigh Energy Physics - PhenomenologyDistribution functionHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)0103 physical sciencesAxionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Higgs production in a warped extra dimension

2012

Measurements of the Higgs-boson production cross section at the LHC are an important tool for studying electroweak symmetry breaking at the quantum level, since the main production mechanism gg → h is loop-suppressed in the Standard Model (SM). Higgs production in extra-dimensional extensions of the SM is sensitive to the Kaluza-Klein (KK) excitations of the quarks, which can be exchanged as virtual particles in the loop. In the context of the minimal Randall-Sundrum (RS) model with bulk fields and a brane-localized Higgs sector, we derive closed analytical expressions for the gluon-gluon fusion process, finding that the effect of the infinite tower of virtual KK states can be described in …

High Energy Physics - TheoryPhysicsQuarkParticle physicsNuclear and High Energy PhysicsLarge Hadron ColliderHiggs Physics010308 nuclear & particles physicsBrane Dynamics in Gauge TheoriesElectroweak interactionHigh Energy Physics::PhenomenologyYukawa potentialFOS: Physical sciencesField Theories in Higher Dimensions01 natural sciencesStandard ModelHiggs sectorHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)0103 physical sciencesHiggs bosonSymmetry breaking010306 general physicsHiggs Physics; Field Theories in Higher Dimensions; Brane Dynamics in Gauge Theories
researchProduct

Fitting formulae for photon spectra from WIMP annihilation

2011

Annihilation of different dark matter (DM) candidates into Standard Model (SM) particles could be detected through their contribution to the gamma ray fluxes that are measured on the Earth. The magnitude of such contributions depends on the particular DM candidate, but certain imprints of produced photon spectra may be analyzed in a model-independent fashion. In this work we provide the fitting formulae for the photon spectra generated by WIMP annihilation into quarks, leptons and gauge bosons channels in a wide range of WIMP masses.

High Energy Physics - TheoryQuarkHistoryParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciences01 natural sciencesEducationStandard ModelNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)WIMP0103 physical sciences010306 general physicsPhysicsGauge bosonAnnihilation010308 nuclear & particles physicsFísicaComputer Science ApplicationsHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Weakly interacting massive particlesAstrophysics - Cosmology and Nongalactic AstrophysicsLeptonJournal of Physics: Conference Series
researchProduct

Consistent QFT description of non-standard neutrino interactions

2019

Neutrino oscillations are precision probes of new physics beyond the Standard Model. Apart from neutrino masses and mixings, they are also sensitive to possible deviations of low-energy interactions between quarks and leptons from the Standard Model predictions. In this paper we develop a systematic description of such non-standard interactions (NSI) in oscillation experiments within the quantum field theory framework. We calculate the event rate and oscillation probability in the presence of general NSI, starting from the effective field theory (EFT) in which new physics modifies the flavor or Lorentz structure of charged-current interactions between leptons and quarks. We also provide the…

High Energy Physics - TheoryQuarkNuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard Modelfield theory01 natural sciencesStandard Modeleffective field theory0103 physical sciencesEffective field theorylcsh:Nuclear and particle physics. Atomic energy. RadioactivityNeutrino Physicsneutrino: massQuantum field theory010306 general physicsNeutrino oscillationnumerical calculationsneutrino: interactionPhysics010308 nuclear & particles physicsnew physicsHigh Energy Physics::Phenomenologyquantum mechanicsEffective Field Theories3. Good healthHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]lcsh:QC770-798neutrino: oscillationNeutrinoneutrino: mixingLepton
researchProduct

Dark matter, dark photon and superfluid He-4 from effective field theory

2020

We consider a model of sub-GeV dark matter whose interaction with the Standard Model is mediated by a new vector boson (the dark photon) which couples kinetically to the photon. We describe the possibility of constraining such a model using a superfluid He-4 detector, by means of an effective theory for the description of the superfluid phonon. We find that such a detector could provide bounds that are competitive with other direct detection experiments only for ultralight vector mediator, in agreement with previous studies. As a byproduct we also present, for the first time, the low-energy effective field theory for the interaction between photons and phonons.

High Energy Physics - Theorylight dark matterNuclear and High Energy PhysicsPhotonDark matterFOS: Physical scienceshelium01 natural sciencesDark photonVector bosonStandard ModelSuperfluidityeffective theoryHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theory010306 general physicsphononLight dark matterPhysics010308 nuclear & particles physicslcsh:QC1-999High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Quantum electrodynamicsdark photondark photon; effective theory; helium; light dark matter; phononlcsh:Physics
researchProduct

Measuring lepton flavor violation at LHC with a long-lived slepton in the coannihilation region

2008

When the mass difference between the lightest slepton, the NLSP, and the lightest neutralino, the LSP, is smaller than the tau mass, the lifetime of the lightest slepton increases in many orders of magnitude with respect to typical lifetimes of other supersymmetric particles. These small mass differences are possible in the MSSM and, for instance, they correspond to the coannihilation region of the CMSSM for $M_{1/2} \gsim 700$ GeV. In a general gravity-mediated MSSM, where the lightest supersymmetric particle is the neutralino, the lifetime of the lightest slepton is inversely proportional to the square of the intergenerational mixing in the slepton mass matrices. Such a long-lived slepton…

HistoryNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsHigh Energy Physics::LatticeFlavourFOS: Physical sciencesLightest Supersymmetric ParticleEducationStandard ModelNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)Atlas (anatomy)medicinePhysicsLarge Hadron ColliderHigh Energy Physics::PhenomenologySuperpartnerSupersymmetryComputer Science ApplicationsHigh Energy Physics - Phenomenologymedicine.anatomical_structureNeutralinoHigh Energy Physics::ExperimentMinimal Supersymmetric Standard ModelLeptonPhysical Review D
researchProduct

Indirect dark matter search with the ANTARES neutrino telescope

2012

Using the data recorded by the ANTARES neutrino telescope during 2007 and 2008, a search for high energy neutrinos coming from the direction of the Sun has been performed. The neutrino selection criteria have been chosen so as to maximize the rejection of the atmospheric background with respect to possible signals produced by the self-annihilation of weakly interactive massive particles accumulated in the centre of the Sun. After data unblinding, the number of neutrinos observed was found to be compatible with background expectations. The results obtained were compared to the fluxes predicted by the Constrained Minimal Supersymmetric Standard Model, and 90% upper limits for this model were …

HistoryParticle physicsHigh energyAstrophysics::High Energy Astrophysical PhenomenaScalar (mathematics)Neutrino telescopeDark matterCompact dimensionFOS: Physical sciencesScale (descriptive set theory)EducationStandard ModelHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Direct searchInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MuonHigh Energy Physics::PhenomenologyGauginoAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science ApplicationsHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsMinimal Supersymmetric Standard Model
researchProduct

Discrete Symmetries CP, T, CPT

2016

The role of Symmetry Breaking mechanisms to search for New Physics is of highest importance. We discuss the status and prospects of the Discrete Symmetries CP, T, CPT looking for their separate Violation in LHC experiments and meson factories.

HistoryParticle physicsMeson productionMesonCPT symmetryQC1-999Physics beyond the Standard ModelGeneral Physics and AstronomyFOS: Physical sciencesQuantum entanglement01 natural sciencesEducationHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesSymmetry breaking010306 general physicsPhysicsLarge Hadron Collider010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixPhysicsOperator (physics)High Energy Physics::PhenomenologyTime evolutionComputer Science ApplicationsB-factoryBaryogenesisStandard Model (mathematical formulation)High Energy Physics - PhenomenologyHomogeneous spaceCP violationHigh Energy Physics::ExperimentEPJ Web of Conferences
researchProduct