Search results for "stereo"

showing 10 items of 6147 documents

Metal Ions and Metal Complexes in Alzheimer's Disease.

2015

Background: Alzheimer’s disease (AD) is the most common form of dementia that seriously affects daily life. Even if AD pathogenesis is still subject of debate, it is generally accepted that cerebral cortex plaques formed by aggregated amyloid-β (Aβ) peptides can be considered a characteristic pathological hallmark. It is well known that metal ions play an important role in the aggregation process of Aβ. Methods: This review focuses on the anti-Aβ aggregation activity of chelating ligands as well as on the use of metal complexes as diagnostic probes and as potential drugs. Conclusion: While chelating agents, such as curcumin or flavonoid derivatives, are currently used to capture metal ions …

0301 basic medicineStereochemistryMetal ions in aqueous solutionchemistry.chemical_elementProtein aggregationImagingPathogenesis03 medical and health scienceschemistry.chemical_compoundProtein AggregatesAlzheimer DiseaseCoordination ComplexesMetals HeavyDrug DiscoveryAD drugmedicineDementiaAnimalsHumansChelationMetal ionPharmacologyAmyloid beta-PeptidesDrug Discovery3003 Pharmaceutical ScienceAnti-aβ aggregating agentmedicine.diseaseCombinatorial chemistryRuthenium030104 developmental biologychemistrySettore CHIM/03 - Chimica Generale E InorganicaCurcuminMetal complexeAlzheimer's diseaseAlzheimer’s diseaseCurrent pharmaceutical design
researchProduct

Fluorinated Chaperone−β-Cyclodextrin Formulations for β-Glucocerebrosidase Activity Enhancement in Neuronopathic Gaucher Disease

2017

Amphiphilic glycomimetics encompassing a rigid, undistortable nor-tropane skeleton based on 1,6-anhydro-L-idonojirimycin and a polyfluorinated antenna, when formulated as the corresponding inclusion complexes with β-cyclodextrin (βCD), have been shown to behave as pharmacological chaperones (PCs) that efficiently rescue lysosomal β- glucocerebrosidase mutants associated to the neuronopathic variants of Gaucher disease (GD), including the highly refractory L444P/L444P and L444P/P415R single nucleotide polymorphs, in patient fibroblasts. The body of work here presented includes the design criteria for the PC prototype, the synthesis of a series of candidates, the characterization of the PC:βC…

0301 basic medicineStereochemistryMutantNeuronopathic Gaucher Disease03 medical and health sciencesGlucocerebrosidase activityDrug DiscoveryAmphiphileHumansIn patientNucleotideCells Culturedchemistry.chemical_classificationGaucher DiseasebiologyCyclodextrinChemistrybeta-CyclodextrinsFluorine3. Good healthMolecular Docking Simulation030104 developmental biologyBiochemistryChaperone (protein)biology.proteinGlucosylceramidaseMolecular MedicineMolecular ChaperonesJournal of Medicinal Chemistry
researchProduct

A Vastly Increased Chemical Variety of RNA Modifications Containing a Thioacetal Structure

2018

International audience; Recently discovered new chemical entities in RNA modifications have involved surprising functional groups that enlarge the chemical space of RNA. Using LC-MS, we found over 100 signals of RNA constituents that contained a ribose moiety in tRNAs from E. coli. Feeding experiments with variegated stable isotope labeled compounds identified 37 compounds that are new structures of RNA modifications. One structure was elucidated by deuterium exchange and high-resolution mass spectrometry. The structure of msms2 i6 A (2-methylthiomethylenethio-N6-isopentenyl-adenosine) was confirmed by methione-D3 feeding experiments and by synthesis of the nucleobase. The msms2 i6 A contai…

0301 basic medicineStereochemistryThioacetal010402 general chemistry01 natural sciencesCatalysisNucleobaseisotope labelling03 medical and health scienceschemistry.chemical_compoundAcetalsRNA modificationsTandem Mass Spectrometry[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]RiboseEscherichia coliMoietySulfhydryl Compoundschemistry.chemical_classificationChemistrythioacetalsRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral Chemistryradical-SAM enzymesChemical space0104 chemical sciencesLC-MSRNA Bacterial030104 developmental biologyEnzymeNucleic Acid ConformationHydrogen–deuterium exchangeChromatography Liquid
researchProduct

Screening of potent phytochemical inhibitors against SARS-CoV-2 protease and its two Asian mutants

2021

Abstract Background COVID-19, declared a pandemic in March 2020 by the World Health Organization is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The virus has already killed more than 2.3 million people worldwide. Object The principal intent of this work was to investigate lead compounds by screening natural product library (NPASS) for possible treatment of COVID-19. Methods Pharmacophore features were used to screen a large database to get a small dataset for structure-based virtual screening of natural product compounds. In the structure-based screening, molecular docking was performed to find a potent inhibitor molecule against the main protease (Mpro) of SARS-…

0301 basic medicineStereochemistrymedicine.medical_treatmentPhytochemicalsProtein Data Bank (RCSB PDB)Health Informaticsmedicine.disease_causeMolecular Docking SimulationAntiviral AgentsArticleDocking03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicineHumansProtease InhibitorsCoronavirusVirtual screeningNatural productsProteaseChemistrySARS-CoV-2COVID-19Computer Science ApplicationsProteaseCoronavirusMolecular Docking Simulation030104 developmental biologyDocking (molecular)PharmacophoreLead compound030217 neurology & neurosurgeryMproPeptide HydrolasesComputers in Biology and Medicine
researchProduct

Evaluation of dipeptide nitriles as inhibitors of rhodesain, a major cysteine protease of Trypanosoma brucei

2016

A series of dipeptide nitriles known as inhibitors of mammalian cathepsins were evaluated for inhibition of rhodesain, the cathepsin L-like protease of Trypanosoma brucei. Compound 35 consisting of a Leu residue fitting into the S2 pocket and a triarylic moiety consisting of thiophene, a 1,2,4-oxadiazole and a phenyl ring fitting into the S3 pocket, and compound 33 with a 3-bromo-Phe residue (S2) and a biphenyl fragment (S3) were found to inhibit rhodesain in the single-digit nanomolar range. The observed steep structure-activity relationship could be explained by covalent docking simulations. With their high selectivity indices (ca. 200) and the good antitrypanosomal activity (8μM) the com…

0301 basic medicineStereochemistrymedicine.medical_treatmentTrypanosoma brucei bruceiClinical BiochemistryAntitubercular AgentsPharmaceutical ScienceCysteine Proteinase InhibitorsTrypanosoma bruceiBiochemistryCysteine Proteinase InhibitorsStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundNitrilesDrug DiscoverymedicineStructure–activity relationshipMoietyMolecular BiologyProteaseDipeptideDose-Response Relationship DrugMolecular StructurebiologyChemistryOrganic ChemistryDipeptidesbiology.organism_classificationCysteine proteaseCysteine Endopeptidases030104 developmental biologyDocking (molecular)Molecular MedicineBioorganic & Medicinal Chemistry Letters
researchProduct

Inhibition of Formation of Rev-RRE Complex by Pyronin Y

1993

The interaction of pyronin Y, an RNA intercalating drug, with the binding of Rev protein from human immunodeficiency virus type 1 (HIV-1) to Rev-responsive element (RRE)-containing env RNA was studied. In gel retardation assays, recombinant Rev protein tightly bound to in vitro transcribed RRE RNA. Nitrocellulose-filter-binding studies revealed a dissociation constant of ≈(1–2) = 10−10M (Pfeifer et al., 1991). Pyronin Y efficiently suppressed formation of the Rev-RRE complex. At a concentration of 1 μg ml−1, complex formation was almost completely inhibited. Electron microscopy showed that Rev oligomerizes in the presence of RRE-containing RNA with the formation of short rod-like structures…

0301 basic medicineStereochemistryviruses030106 microbiologyResponse elementIntercalation (chemistry)RNAGeneral MedicineBiology01 natural sciencesMolecular biologyIn vitroVirus0104 chemical scienceslaw.inventionDissociation constant010404 medicinal & biomolecular chemistry03 medical and health sciencesMechanism of actionlawmedicineRecombinant DNAmedicine.symptomAntiviral Chemistry and Chemotherapy
researchProduct

Diastereoselectivity of 5-Methyluridine Osmylation Is Inverted inside an RNA Chain

2016

In this study, we investigated the reaction of the osmium tetroxide-bipyridine complex with pyrimidines in RNA. This reagent, which reacts with the diastereotopic 5-6 double bond, thus leading to the formation of two diastereomers, was used in the past to label thymidine and 5-methylcytosine in DNA. In light of the growing interest in post-transcriptional RNA modifications, we addressed the question of whether this reagent could be used for labeling of the naturally occurring RNA modifications 5-methylcytosine and 5-methyluridine. On nucleoside level, 5-methylcytosine and 5-methyluridine revealed a 5- and 12-fold preference, respectively, over their nonmethylated equivalents. Performing the…

0301 basic medicineSteric effectsDouble bondPyridinesStereochemistryBiomedical EngineeringPharmaceutical ScienceBioengineering010402 general chemistry01 natural sciences03 medical and health scienceschemistry.chemical_compoundOrganometallic CompoundsUridinePharmacologychemistry.chemical_classificationOrganic ChemistryRNAStereoisomerism0104 chemical sciencesPyrimidines030104 developmental biologychemistryReagentRNA5-MethyluridineThymidineNucleosideDNABiotechnologyBioconjugate Chemistry
researchProduct

2 H-1,2,3-Triazole-Based Dipeptidyl Nitriles: Potent, Selective, and Trypanocidal Rhodesain Inhibitors by Structure-Based Design.

2018

Macrocyclic inhibitors of rhodesain (RD), a parasitic cysteine protease and drug target for the treatment of human African trypanosomiasis, have shown low metabolic stability at the macrocyclic ether bridge. A series of acyclic dipeptidyl nitriles was developed using structure-based design (PDB ID: 6EX8). The selectivity against the closely related cysteine protease human cathepsin L (hCatL) was substantially improved, up to 507-fold. In the S2 pocket, 3,4-dichlorophenylalanine residues provided high trypanocidal activities. In the S3 pocket, aromatic residues provided enhanced selectivity against hCatL. RD inhibition (Ki values) and in vitro cell-growth of Trypanosoma brucei rhodesiense (I…

0301 basic medicineTrypanosoma brucei rhodesienseStereochemistrySwineTrypanosoma cruziPlasmodium falciparumTriazoleProtozoan ProteinsCysteine Proteinase InhibitorsLigands01 natural sciencesCysteine Proteinase InhibitorsCell LineCathepsin L03 medical and health scienceschemistry.chemical_compoundMiceStructure-Activity RelationshipIn vivoDrug DiscoveryNitrilesStructure–activity relationshipAnimalsHumansATP Binding Cassette Transporter Subfamily B Member 1Trypanocidal agentBinding SitesbiologyMolecular Structure010405 organic chemistryChemistryTrypanosoma brucei rhodesienseDipeptidesTriazolesCysteine proteaseTrypanocidal Agents0104 chemical sciencesRatsCysteine Endopeptidases030104 developmental biologyDrug Designbiology.proteinMicrosomes LiverMolecular MedicineFemaleLeishmania donovaniJournal of medicinal chemistry
researchProduct

Development of novel 1,4-benzodiazepine-based Michael acceptors as antitrypanosomal agents

2016

Novel 1,4-benzodiazepines, endowed with a Michael acceptor moiety, were designed taking advantage of a computational prediction of their pharmacokinetic parameters. Among all the synthesized derivatives, we identified a new lead compound (i.e., 4a), bearing a vinyl ketone warhead and endowed with a promising antitrypanosomal activity against Trypanosoma brucei brucei (IC50 = 5.29 µM), coupled with a lack of cytotoxicity towards mammalian cells (TC50>100 µM).

0301 basic medicineTrypanosomaKetonePeptidomimeticPeptidomimeticStereochemistryTrypanosoma brucei bruceiClinical BiochemistryPharmaceutical ScienceTrypanosoma brucei01 natural sciencesBiochemistryCell LineBenzodiazepinesMiceStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundparasitic diseasesDrug DiscoveryAnimalsStructure–activity relationshipMoietyCytotoxicityMolecular BiologyMicrowave irradiationchemistry.chemical_classificationDose-Response Relationship DrugMolecular Structurebiology010405 organic chemistryMacrophagesOrganic Chemistrybiology.organism_classificationMichael acceptors Microwave irradiation Peptidomimetics Pharmacokinetic parameters TrypanosomaTrypanocidal Agents0104 chemical sciencesPharmacokinetic parameter030104 developmental biologychemistryMichael reactionMolecular MedicineMichael acceptorLead compoundBioorganic & Medicinal Chemistry Letters
researchProduct

A possible desensitized state conformation of the human α7 nicotinic receptor: A molecular dynamics study

2017

International audience; The determination of the conformational states corresponding to diverse functional roles of ligand gated ion channels is subject of intense investigation with various techniques, from X-rays structure determination to electrophysiology and computational modeling. Even with a certain number of structures becoming recently available, only few major structural features distinguishing conductive open channel from the non conductive resting protein have been highlighted, while high-resolution details are still missing. The characterization of the desensitized conformation(s) is even more complex, and only few specific characteristics have been identified. Furthermore, exp…

0301 basic medicinealpha7 Nicotinic Acetylcholine ReceptorStereochemistryPyridinesBiophysicsMolecular Dynamics SimulationBiochemistry03 medical and health sciencesMolecular dynamicsmedicineHumansHomology modelingnicotinic receptor epibatidine molecular dynamics inactive stateIon channel[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]ChemistryProtein StabilityOrganic ChemistryHydrogen BondingBridged Bicyclo Compounds HeterocyclicSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Protein Structure Tertiary[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsElectrophysiology030104 developmental biologyNicotinic agonistα7 nicotinic receptorEpibatidineLigand-gated ion channel[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]medicine.drug
researchProduct