Search results for "stochastic process."
showing 10 items of 346 documents
Combined dynamic response of primary and multiply connected cascaded secondary subsystems
1991
A method is proposed for the deterministic and stochastic non-stationary analysis of linear composite systems with cascaded secondary subsystems subjected to a seismic input. This method makes it possible to evaluate, by means of a unitary formulation, the deterministic and non-stationary stochastic response of both classically and non-classically damped subsystems and of secondary subsystems multiply supported on the primary one, as well as the ground. The proposed procedure is very efficient from a computational point of view, because of the Kronecker algebra systematically employed. Indeed, by using this algebra, it is possible to obtain in a very compact and elegant form the eigenproper…
THE ROLE OF UNBOUNDED TIME-SCALES IN GENERATING LONG-RANGE MEMORY IN ADDITIVE MARKOVIAN PROCESSES
2013
Any additive stationary and continuous Markovian process described by a Fokker–Planck equation can also be described in terms of a Schrödinger equation with an appropriate quantum potential. By using such analogy, it has been proved that a power-law correlated stationary Markovian process can stem from a quantum potential that (i) shows an x-2 decay for large x values and (ii) whose eigenvalue spectrum admits a null eigenvalue and a continuum part of positive eigenvalues attached to it. In this paper we show that such two features are both necessary. Specifically, we show that a potential with tails decaying like x-μ with μ < 2 gives rise to a stationary Markovian process which is not p…
ORDERING KINETICS IN QUASI-ONE-DIMENSIONAL ISING-LIKE SYSTEMS
1993
We present results of a Monte Carlo simulation of the kinetics of ordering in the two-dimensional nearest-neighbor Ising model in anL xM geometry with two free boundaries of length M≫L. This model can be viewed as representing an adsorbant on a stepped surface with mean terrace widthL. We follow the ordering kinetics after quenches to temperatures 0.25 ⩽ T/Tc ⩽ 1 starting from a random initial configuration at a coverage ofΘ=0.5 in the corresponding lattice gas picture. The systems evolve in time according to a Glauber kinetics with nonconserved order parameter. The equilibrium structure is given by a one-dimensional sequence of ordered domains. The ordering process evolves from a short ini…
BROWNIAN DYNAMICS SIMULATIONS WITHOUT GAUSSIAN RANDOM NUMBERS
1991
We point out that in a Brownian dynamics simulation it is justified to use arbitrary distribution functions of random numbers if the moments exhibit the correct limiting behavior prescribed by the Fokker-Planck equation. Our argument is supported by a simple analytical consideration and some numerical examples: We simulate the Wiener process, the Ornstein-Uhlenbeck process and the diffusion in a Φ4 potential, using both Gaussian and uniform random numbers. In these examples, the rate of convergence of the mean first exit time is found to be nearly identical for both types of random numbers.
Stochastic seismic analysis of multidegree of freedom systems
1984
Abstract A unconditionally stable step-by-step procedure is proposed to evaluate the mean square response of a linear system with several degrees of freedom, subjected to earthquake ground motion. A non-stationary modulated random process, obtained as the product of a deterministic time envelope function and a stationary noise, is used to simulate earthquake acceleration. The accuracy of the procedure and its extension to nonlinear systems are discussed. Numerical examples are given for a hysteretic system, a duffing oscillator and a linear system with several degrees of freedom.
Dynamics analysis of distributed parameter system subjected to a moving oscillator with random mass, velocity and acceleration
2002
Abstract The problem of calculating the response of a distributed parameter system excited by a moving oscillator with random mass, velocity and acceleration is investigated. The system response is a stochastic process although its characteristics are assumed to be deterministic. In this paper, the distributed parameter system is assumed as a beam with Bernoulli–Euler type analytical behaviour. By adopting the Galerkin's method, a set of approximate governing equations of motion possessing time-dependent uncertain coefficients and forcing function is obtained. The statistical characteristics of the deflection of the beam are computed by using an improved perturbation approach with respect t…
A simplified analysis for the evaluation of stochastic response of elasto-plastic oscillators
1999
Abstract The paper deals with dynamic hysteretic oscillators without post-yielding hardening, called ideal elasto-plastic oscillators, subjected to white noise. They are characterized by the fact that they do not reach stationarity even though excited by stationary stochastic processes. A simplified solution procedure to capture this behaviour is presented in this paper. It is based on modelling the accumulated plastic deformations as a homogeneous compound Poisson process. In particular, two aspects are addressed in the paper: (1) evaluation of the probabilistic parameters of the accumulated plastic deformation process; and (2) evaluation of the second-order cumulants of the response by me…
Digital generation of multivariate wind field processes
2001
Abstract A very efficient procedure for the generation of multivariate wind velocity stochastic processes by wave superposition as well as autoregressive time series is proposed in this paper. The procedure starts by decomposing the wind velocity field into a summation of fully coherent independent vector processes using the frequency dependent eigenvectors of the Power Spectral Density matrix. It is shown that the application of the method allows to show some very interesting physical properties that allow to reduce drastically the computational effort. Moreover, using a standard finite element procedure for approximating the frequency dependent eigenvectors, the generation procedure requi…
Roughness of two nonintersecting one-dimensional interfaces.
2006
The dynamics of two spatially discrete one-dimensional single-step model interfaces with a noncrossing constraint is studied in both nonsymmetric propagating and symmetric relaxing cases. We consider possible scaling scenarios and study a few special cases by using continuous-time Monte Carlo simulations. The roughness of the interfaces is observed to be nonmonotonic as a function of time, and in the stationary state it is nonmonotonic also as a function of the strength of the effective force driving the interfaces against each other. This is related on the one hand to the reduction of the available configuration space and on the other hand to the ability of the interfaces to conform to eac…
Stochastic analysis of motorcycle dynamics
2011
Off-road and racing motorcycles require a particular setup of the suspensions to improve the comfort and the safety of the rider, maintaining a continuous contact between the road and the motorcycle (by means of the tires). Further, because of the ground roughness, in the case of offroad motorcycle, suspensions usually experience extreme and erratic excursions (suspension stroke) in performing their function. In this regard, the adoption of nonlinear devices can, perhaps, limit both the acceleration experienced by the sprung mass and the excursions of the suspensions. This leads to the consideration of asymmetric nonlinearly-behaving suspensions. This option, however, induces the difficulty…