Search results for "submanifolds"

showing 2 items of 2 documents

Area of intrinsic graphs and coarea formula in Carnot Groups

2020

AbstractWe consider submanifolds of sub-Riemannian Carnot groups with intrinsic $$C^1$$ C 1 regularity ($$C^1_H$$ C H 1 ). Our first main result is an area formula for $$C^1_H$$ C H 1 intrinsic graphs; as an application, we deduce density properties for Hausdorff measures on rectifiable sets. Our second main result is a coarea formula for slicing $$C^1_H$$ C H 1 submanifolds into level sets of a $$C^1_H$$ C H 1 function.

Mathematics - Differential GeometrySubmanifoldsGeneral MathematicsCarnot groups Area formula Coarea formula Hausdorff measures SubmanifoldsryhmäteoriaCoarea formulaMetric Geometry (math.MG)Area formulaHausdorff measuressubmanifoldsdifferentiaaligeometriacoarea formulaMathematics - Metric GeometryDifferential Geometry (math.DG)Mathematics - Classical Analysis and ODEsCarnot groupsClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometryarea formulamittateoriaMathematics::Differential Geometry53C17 28A75 22E30
researchProduct

Pauls rectifiable and purely Pauls unrectifiable smooth hypersurfaces

2020

This paper is related to the problem of finding a good notion of rectifiability in sub-Riemannian geometry. In particular, we study which kind of results can be expected for smooth hypersurfaces in Carnot groups. Our main contribution will be a consequence of the following result: there exists a -hypersurface without characteristic points that has uncountably many pairwise non-isomorphic tangent groups on every positive-measure subset. The example is found in a Carnot group of topological dimension 8, it has Hausdorff dimension 12 and so we use on it the Hausdorff measure . As a consequence, we show that any Lipschitz map defined on a subset of a Carnot group of Hausdorff dimension 12, with…

codimension-one rectifiabilitysmooth hypersurface1ryhmäteoriaIntrinsic Lipschitz graphIntrinsic rectifiable setsubmanifoldsdifferentiaaligeometriaIntrinsic Cintrinsic Lipschitz graphCarnot groupsSmooth hypersurfaceMathematics::Metric Geometryintrinsic rectifiable setmittateoriaCodimension-one rectifiabilityCarnot groups; Codimension-one rectifiability; Intrinsic C; 1; submanifolds; Intrinsic Lipschitz graph; Intrinsic rectifiable set; Smooth hypersurface
researchProduct