Search results for "substrate"

showing 10 items of 1018 documents

Surface structure promoted high-yield growth and magnetotransport properties of Bi2Se3 nanoribbons

2019

AbstractIn the present work, a catalyst-free physical vapour deposition method is used to synthesize high yield of Bi2Se3 nanoribbons. By replacing standard glass or quartz substrates with aluminium covered with ultrathin porous anodized aluminium oxide (AAO), the number of synthesized nanoribbons per unit area can be increased by 20–100 times. The mechanisms of formation and yield of the nanoribbons synthesized on AAO substrates having different arrangement and size of pores are analysed and discussed. It is shown that the yield and average length of the nanoribbons can base tuned by adjustment of the synthesis parameters. Analysis of magnetotransport measurements for the individual Bi2Se3…

0301 basic medicineMaterials scienceYield (engineering)Nanowirelcsh:Medicinechemistry.chemical_elementSubstrate (electronics)TOPOLOGICAL INSULATORArticleInorganic Chemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineBI2TE3AluminiumMaterials ChemistryElectronic devices[CHIM]Chemical SciencesTopological insulatorsDEPOSITIONlcsh:ScienceNANOWIRESurface statesMultidisciplinaryAnodizingPOROUS ALUMINAlcsh:ROrganic ChemistrySynthesis and processingCondensed Matter PhysicsARRAYS030104 developmental biologychemistryChemical engineeringAluminium oxidelcsh:QLayer (electronics)030217 neurology & neurosurgeryScientific Reports
researchProduct

Molecular Mechanism of Inhibition of DNA Methylation by Zebularine

2017

In this work, we have analyzed the molecular mechanism of inhibition of a C5-DNA methyltransferase by zebularine using classical and QM/MM simulations. We found that the reaction proceeds with the addition of an unprotonated cysteine to the C6 position of the ring followed by methyl transfer to the C5 position. However, while the first step is reversible and presents a moderate free-energy barrier, the second step presents a large free-energy barrier, preventing the formation of the methylated complex. This mechanistic proposal agrees with recent experimental observations that point to the formation of a reversible covalent complex between DNA containing zebularine and methyltransferases. T…

0301 basic medicineMethyltransferaseStereochemistrySubstrate (chemistry)General ChemistryCatalysisQM/MM03 medical and health scienceschemistry.chemical_compound030104 developmental biologychemistryZebularineCovalent bondDNACytosineCysteineACS Catalysis
researchProduct

Diverse relations between ABC transporters and lipids: An overview.

2016

It was first discovered in 1992 that P-glycoprotein (Pgp, ABCB1), an ATP binding cassette (ABC) transporter, can transport phospholipids such as phosphatidylcholine, -ethanolamine and -serine as well as glucosylceramide and glycosphingolipids. Subsequently, many other ABC transporters were identified to act as lipid transporters. For substrate transport by ABC transporters, typically a classic, alternating access model with an ATP-dependent conformational switch between a high and a low affinity substrate binding site is evoked. Transport of small hydrophilic substrates can easily be imagined this way, as the molecule can in principle enter and exit the transporter in the same orientation. …

0301 basic medicineModels MolecularATP Binding Cassette Transporter Subfamily BBiophysicsGene ExpressionATP-binding cassette transporterPhosphatidylserinesBiologyBiochemistrySubstrate SpecificitySerine03 medical and health sciencesLipid translocationHumansProtein IsoformsBinding siteLipid bilayerLipid TransportATP-binding domain of ABC transportersBinding SitesPhosphatidylethanolaminesFatty AcidsTransporterBiological TransportCell BiologyCell biology030104 developmental biologyBiochemistryPhosphatidylcholineslipids (amino acids peptides and proteins)Protein BindingBiochimica et biophysica acta. Biomembranes
researchProduct

Addition of thiols to the double bond of dipeptide C-terminal dehydroalanine as a source of new inhibitors of cathepsin C.

2017

Addition of thiols to double bond of glycyl-dehydroalanine and phenyl-dehydroalanine esters provided micromolar inhibitors of cathepsin C. The structure-activity studies indicated that dipeptides containing N-terminal phenylalanine exhibit higher affinity towards the enzyme. A series of C-terminal S-substituted cysteines are responsible for varying interaction with S1 binding pocket of cathepsin C. Depending on diastereomer these compounds most likely act as slowly reacting substrates or competitive inhibitors. This was proved by TLC analysis of the medium in which interaction of methyl (S)-phenylalanyl-(R,S)-(S-adamantyl)cysteinate (7i) with the enzyme was studied. Molecular modeling enabl…

0301 basic medicineModels MolecularDouble bondStereochemistryPhenylalanineCysteine Proteinase InhibitorsBiochemistryCathepsin CCathepsin CSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundStructure-Activity Relationship0302 clinical medicineDehydroalanineMoietyAnimalsSulfhydryl CompoundsBinding sitechemistry.chemical_classificationDipeptideAlanineBinding SitesDehydropeptidesDiastereomerEnzyme inhibitorsGeneral MedicineDipeptidesKinetics030104 developmental biologychemistryThiol addition030220 oncology & carcinogenesisCattleBiochimie
researchProduct

Molecular docking-based design and development of a highly selective probe substrate for UDP-glucuronosyltransferase 1A10

2018

Intestinal and hepatic glucuronidation by the UDP-glucuronosyltransferases (UGTs) greatly affect the bioavailability of phenolic compounds. UGT1A10 catalyzes glucuronidation reactions in the intestine, but not in the liver. Here, our aim was to develop selective, fluorescent substrates to easily elucidate UGT1A10 function. To this end, homology models were constructed and used to design new substrates, and subsequently, six novel C3-substituted (4-fluorophenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 4-(dimethylamino)phenyl, 4-methylphenyl, or triazole) 7-hydroxycoumarin derivatives were synthesized from inexpensive starting materials. All tested compounds could be glucuronidated to nonfluorescen…

0301 basic medicineMutantGlucuronidationPharmaceutical ScienceUGT1A10030226 pharmacology & pharmacySubstrate Specificity7-hydroxycoumarin derivativechemistry.chemical_compound0302 clinical medicineDrug DiscoveryCRYSTAL-STRUCTUREGlucuronosyltransferaseta116ta317AFFINITYchemistry.chemical_classificationChemistry3. Good healthMolecular ImagingMolecular Docking Simulation7-hydroxycoumarin317 Pharmacyin silicoMolecular MedicinefluorescenceUDP-glucuronosyltransferaseEXPRESSIONENZYMEStereochemistryIn silicoKineticsFLUORESCENT-PROBETriazoleta311103 medical and health sciencesGlucuronidesMicrosomesXENOBIOTICSHumansUmbelliferonesFluorescent DyesGLUCURONIDATIONta1182glucuronidationfluoresenssiSubstrate (chemistry)drug metabolism030104 developmental biologyEnzymeDRUG-METABOLISMDrug DesignMolecular ProbesMutationMutagenesis Site-DirectedORAL BIOAVAILABILITYDrug metabolism
researchProduct

Effect of graphene substrate type on formation of Bi2Se3 nanoplates

2019

AbstractKnowledge of nucleation and further growth of Bi2Se3 nanoplates on different substrates is crucial for obtaining ultrathin nanostructures and films of this material by physical vapour deposition technique. In this work, Bi2Se3 nanoplates were deposited under the same experimental conditions on different types of graphene substrates (as-transferred and post-annealed chemical vapour deposition grown monolayer graphene, monolayer graphene grown on silicon carbide substrate). Dimensions of the nanoplates deposited on graphene substrates were compared with the dimensions of the nanoplates deposited on mechanically exfoliated mica and highly ordered pyrolytic graphite flakes used as refer…

0301 basic medicineNanostructureMaterials scienceNucleationlcsh:MedicineSubstrate (electronics)Chemical vapor depositionTOPOLOGICAL INSULATORGRAIN-BOUNDARIESArticlelaw.invention03 medical and health scienceschemistry.chemical_compoundTHIN-FILMS0302 clinical medicinelawSilicon carbide[CHIM]Chemical SciencesPyrolytic carbonThin filmlcsh:ScienceMultidisciplinaryGraphenelcsh:R030104 developmental biologySINGLEchemistryChemical engineeringGROWTHlcsh:Q030217 neurology & neurosurgeryScientific Reports
researchProduct

Identification of noncovalent proteasome inhibitors with high selectivity for chymotrypsin-like activity by a multistep structure-based virtual scree…

2016

Noncovalent proteasome inhibitors introduce an alternative mechanism of inhibition to that of covalent inhibitors, e.g. carfilzomib, used in cancer therapy. A multistep hierarchical structure-based virtual screening (SBVS) of the 65,375 NCI lead-like compound library led to the identification of two compounds (9 and 28) which noncovalently inhibited the chymotrypsin-like (ChT-L) activity (Ki = 2.18 and 2.12 μM, respectively) with little or no effects on the other two major proteasome proteolytic activities, trypsin-like (T-L) and post-glutamyl peptide hydrolase (PGPH) activities. A subsequent hierarchical similarity search over the full NCI database with the most active tripeptide-based inh…

0301 basic medicineNon-covalentVirtual screeningProteasome Endopeptidase ComplexStereochemistryProtein ConformationProteolysisDrug Evaluation PreclinicalTripeptideSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundStructure-Activity RelationshipUser-Computer Interface0302 clinical medicineProtein structureCell Line TumorDrug DiscoverymedicineStructure–activity relationshipChymotrypsinHumansProteasome inhibitorCell ProliferationPharmacologyVirtual screeningmedicine.diagnostic_testOrganic ChemistryGeneral MedicineCarfilzomibPeptide scaffoldMolecular Docking SimulationProteasome inhibitors; Non-covalent; Peptide scaffold; Docking studies; Virtual screening030104 developmental biologyProteasomechemistryBiochemistryDocking (molecular)030220 oncology & carcinogenesisDocking studieProteolysisProteasome InhibitorsEuropean journal of medicinal chemistry
researchProduct

Free-energy studies reveal a possible mechanism for oxidation-dependent inhibition of MGL

2016

AbstractThe function of monoacylglycerol lipase (MGL), a key actor in the hydrolytic deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2AG), is tightly controlled by the cell’s redox state: oxidative signals such as hydrogen peroxide suppress MGL activity in a reversible manner through sulfenylation of the peroxidatic cysteines, C201 and C208. Here, using as a starting point the crystal structures of human MGL (hMGL), we present evidence from molecular dynamics and metadynamics simulations along with high-resolution mass spectrometry studies indicating that sulfenylation of C201 and C208 alters the conformational equilibrium of the membrane-associated lid domain of MGL to favo…

0301 basic medicineOxidative phosphorylationMolecular Dynamics SimulationRedoxArticle03 medical and health scienceschemistry.chemical_compoundCatalytic DomainHumansCysteineHydrogen peroxideMultidisciplinary030102 biochemistry & molecular biologybiologyHydrogen bondMetadynamicsActive siteSubstrate (chemistry)Hydrogen BondingHydrogen PeroxideMonoacylglycerol LipasesMonoacylglycerol lipase030104 developmental biologyBiochemistrychemistrybiology.proteinBiophysicsThermodynamicsOxidation-ReductionProtein Processing Post-TranslationalProtein BindingScientific Reports
researchProduct

CntA oxygenase substrate profile comparison and oxygen dependency of TMA production in Providencia rettgeri.

2017

CntA oxygenase is a Rieske 2S-2Fe cluster-containing protein that has been previously described as able to produce trimethylamine (TMA) from carnitine, gamma-butyrobetaine, glycine betaine, and in one case, choline. TMA found in humans is exclusively of bacterial origin, and its metabolite, trimethylamine oxide (TMAO), has been associated with atherosclerosis and heart and renal failure. We isolated four different Rieske oxygenases and determined that there are no significant differences in their substrate panels. All three had high activity toward carnitine/gamma-butyrobetaine, medium activity toward glycine betaine, and very low activity toward choline. We tested the influence of low oxyg…

0301 basic medicineOxygenaseMetaboliteTrimethylamineProvidenciaApplied Microbiology and BiotechnologySubstrate Specificity03 medical and health scienceschemistry.chemical_compoundMethylamines0302 clinical medicineBetaineCarnitinemedicineCholineHumansCarnitinebiologyMicrobiotaProvidencia rettgeriGeneral Medicinebiology.organism_classificationOxygen030104 developmental biologychemistryBiochemistryGlycineOxygenasesOxidation-Reduction030217 neurology & neurosurgerymedicine.drugJournal of basic microbiology
researchProduct

Assessing the biological activity of the glucan phosphatase laforin

2016

Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin's unique glycogen phosphatase activity.

0301 basic medicinePhosphataseLafora diseaseArticleSubstrate SpecificityNitrophenols03 medical and health scienceschemistry.chemical_compound0302 clinical medicineOrganophosphorus CompoundsDual-specificity phosphatasemedicineHumansGlucanEnzyme Assayschemistry.chemical_classificationGlycogenbiologyfood and beveragesBiological activitymedicine.diseaseFluoresceinsProtein Tyrosine Phosphatases Non-Receptor030104 developmental biologyEnzymechemistryBiochemistryLafora Diseasebiology.proteinLaforin030217 neurology & neurosurgeryGlycogen
researchProduct