Search results for "superalgebra"

showing 4 items of 44 documents

Superalgebras: Polynomial identities and asymptotics

2022

To any superalgebra A is attached a numerical sequence cnsup(A), n≥1, called the sequence of supercodimensions of A. In characteristic zero its asymptotics are an invariant of the superidentities satisfied by A. It is well-known that for a PI-superalgebra such sequence is exponentially bounded and expsup(A)=limn→∞⁡cnsup(A)n is an integer that can be explicitly computed. Here we introduce a notion of fundamental superalgebra over a field of characteristic zero. We prove that if A is such an algebra, then C1ntexpsup(A)n≤cnsup(A)≤C2ntexpsup(A)n, where C1>0,C2,t are constants and t is a half integer that can be explicitly written as a linear function of the dimension of the even part of A an…

Settore MAT/02 - AlgebraAlgebra and Number TheoryGrowthPolynomial identitySuperalgebra
researchProduct

*-Graded Capelli polynomials and their asymptotics

2022

Let [Formula: see text] be the free *-superalgebra over a field [Formula: see text] of characteristic zero and let [Formula: see text] be the [Formula: see text]-ideal generated by the set of the *-graded Capelli polynomials [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] alternating on [Formula: see text] symmetric variables of homogeneous degree zero, on [Formula: see text] skew variables of homogeneous degree zero, on [Formula: see text] symmetric variables of homogeneous degree one and on [Formula: see text] skew variables of homogeneous degree one, respectively. We study the asymptotic behavior of the sequence of *-graded codimensions of [Formula: se…

Settore MAT/02 - AlgebraGeneral MathematicsSuperalgebras graded involutions Capelli polynomials codimension growthInternational Journal of Algebra and Computation
researchProduct

Nambu structures and super-theorem of Amitsur-Levitzki

2004

In this thesis, we establish new polynomial identities in a non commutative combinatorial framework. In the first part, we present new Nambu-Lie structures by classifying all (n-1)-structures in \R^n and we give a method for defining all-order brackets in Lie algebras. We are able to quantify one of our structures, thanks to standard polynomials and even Clifford algebras. In the second part of our work, we generalize the notion of standard polynomials to graded algebras, and we prove an Amitsur-Levitzki type theorem for the Lie superalgebras \osp(1,2n) inspired by Kostant's cohomological interpretation of the classical theorem. We give super versions of properties and results needed in Kos…

[ MATH ] Mathematics [math]2n)Lie superalgebras osp(1théorème d'Amitsur-Levitzkitransgression.Crochet de Nambu-LieLie algebraAmitsur-Levitzki theoremstandard polynomial[MATH] Mathematics [math]Nambu-Lie bracketspolynôme standardquantificationsuperalgèbres de Lie osp(1algèbre de Clifford[MATH]Mathematics [math]Clifford algebratransgressionalgèbre de Lie
researchProduct

On algebras and superalgebras with linear codimension growth

2006

We present the classification, up to PI-equivalence, of the algebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. We also describe the generalization of this result in the setting of superalgebras and their graded identities. As a consequence we determine all linear functions describing the ordinary codimensions and the graded codimensions of a given algebra.

superalgebra
researchProduct