Search results for "superfluidity"
showing 10 items of 110 documents
Superfluidity of fermionic pairs in a harmonic trap. Comparative studies: Local Density Approximation and Bogoliubov-de Gennes solutions
2020
Abstract Experiments with ultracold gases on the lattice give the opportunity to realize superfluid fermionic mixtures in a trapping potential. The external trap modifies the chemical potential locally. Moreover, this trap also introduces non-homogeneity in the superconducting order parameter. There are, among other approaches, two methods which can be used to describe the system of two-component mixtures loaded into an optical lattice: the Local Density Approximation (LDA) and the self-consistent Bogoliubov–de Gennes equations. Here, we compare results obtained within these two methods. We conclude that the results can be distinguishable only in the case of a small value of the pairing int…
Pairing in a three-component Fermi gas
2006
We consider pairing in a three-component gas of degenerate fermions. In particular, we solve the finite temperature mean-field theory of an interacting gas for a system where both interaction strengths and fermion masses can be unequal. At zero temperature we find a a possibility of a quantum phase transition between states associated with pairing between different pairs of fermions. On the other hand, finite temperature behavior of the three-component system reveals some qualitative differences from the two-component gas: for a range of parameters it is possible to have two different critical temperatures. The lower one corresponds to a transition between different pairing channels, while …
Beyond the dilute Bose gas
2006
Abstract We discuss problems of three dimensional Bose gases in interaction but non-dilute. We then use the theory of a “weakly interacting” Bose gas recently analyzed as an attempt to obtain further insights into non-dilute systems. In particular, we develop the theory with additional remarks, discussions and a slight modification. The article concludes with a much more detailed analysis of the Bose condensate depletion, as well as a study of the two-fluid model of Tisza and Landau: the coexistence of normal and superfluid liquids at sufficiently low temperatures. In fact, even if it is based on one debatable hypothesis, this non-dilute gas qualitatively leads, up to Landau's “ T 4 law”, t…
Supersolid Behavior of Light
2008
We will show how light can form stationary structures on dielectric periodic media such that their dynamics present simultaneous features of spatial long range order and superfluidity. This phenomenon is normally referred to as supersolidity.
Spatial dependence of the pairing field calculated with bare and induced interactions
2009
The interaction induced by the exchange of low-lying surface vibrations between pairs of orbitals close to the Fermi surface provides an important contribution to pairing correlations in superfluid nuclei. We study the spatial dependence of the pairing field obtained adding the bare and induced interaction in 120Sn.
Observation of a superfluid component within solid helium
2011
We demonstrate by neutron scattering that a localized superfluid component exists at high pressures within solid helium in aerogel. Its existence is deduced from the observation of two sharp phonon-roton spectra which are clearly distinguishable from modes in bulk superfluid helium. These roton excitations exhibit different roton gap parameters than the roton observed in the bulk fluid at freezing pressure. One of the roton modes disappears after annealing the samples. Comparison with theoretical calculations suggests that the model that reproduces the observed data best is that of superfluid double layers within the solid and at the helium-substrate interface. peerReviewed
Small-amplitude collective modes of a finite-size unitary Fermi gas in deformed traps
2019
We have investigated collective breathing modes of a unitary Fermi gas in deformed harmonic traps. The ground state is studied by the Superfluid Local Density Approximation (SLDA) and small-amplitude collective modes are studied by the iterative Quasiparticle Random Phase Approximation (QRPA). The results illustrate the evolutions of collective modes of a small system in traps from spherical to elongated or pancake deformations. For small spherical systems, the influences of different SLDA parameters are significant, and, in particular, a large pairing strength can shift up the oscillation frequency of collective mode. The transition currents from QRPA show that the compressional flow patte…
Quantum field theory of dilute homogeneous Bose-Fermi mixtures at zero temperature: General formalism and beyond mean-field corrections
2002
We consider a dilute homogeneous mixture of bosons and spin-polarized fermions at zero temperature. We first construct the formal scheme for carrying out systematic perturbation theory in terms of single particle Green's functions. We introduce a new relevant object, the renormalized boson-fermion T-matrix which we determine to second order in the boson-fermion s-wave scattering length. We also discuss how to incorporate the usual boson-boson T-matrix in mean-field approximation to obtain the total ground state properties of the system. The next order term beyond mean-field stems from the boson-fermion interaction and is proportional to $a_{\scriptsize BF}k_{\scriptsize F}$. The total groun…
Strongly interacting Fermi gases with density imbalance
2005
We consider density-imbalanced Fermi gases of atoms in the strongly interacting, i.e. unitarity, regime. The Bogoliubov-deGennes equations for a trapped superfluid are solved. They take into account the finite size of the system, as well as give rise to both phase separation and FFLO type oscillations in the order parameter. We show how radio-frequency spectroscopy reflects the phase separation, and can provide direct evidence of the FFLO-type oscillations via observing the nodes of the order parameter.
Pairing gap and in-gap excitations in trapped fermionic superfluids
2004
We consider trapped atomic Fermi gases with Feshbach-resonance enhanced interactions in pseudogap and superfluid temperatures. We calculate the spectrum of RF(or laser)-excitations for transitions that transfer atoms out of the superfluid state. The spectrum displays the pairing gap and also the contribution of unpaired atoms, i.e. in-gap excitations. The results support the conclusion that a superfluid, where pairing is a many-body effect, was observed in recent experiments on RF spectroscopy of the pairing gap.